Skip to main content

Investigation of fluorophores for single-molecule detection of anodic corrosion redox reactions

Abstract

We investigate the single-molecule detection of anodic corrosion redox reactions of iron using two fluorophores, FeRhoNox-1 and FluoZin-3, which “turn-on” upon reacting with Fe2+. Both dye molecules show potential as fluorogenic sensors for detecting anodic corrosion of iron in an aqueous environment, but FeRhoNox-1 shows a larger change in fluorescence signal than FluoZin-3. Deviations from the ensemble observations of iron corrosion are observed when performing single-molecule counting analysis of the collected images of FeRhoNox-1 “turning-on” over time. A complete picture of the corrosion initiation at the molecular scale can be obtained by combining the Fe2+-sensitive detection with cathodic corrosion reaction detection.

Graphic abstract

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. 1.

    Det Norske Veritas group, Assessment of global cost of corrosion APPENDIX A assessment of global cost of corrosion. NACE. (2015). http://impact.nace.org/documents/appendix-a.pdf. Accessed 7 July 2021

  2. 2.

    H. Böhni, T. Suter, A. Schreyer, Micro- and nanotechniques to study localized corrosion. Electrochim. Acta. 40, 1361–1368 (1995). https://doi.org/10.1016/0013-4686(95)00072-M

    Article  Google Scholar 

  3. 3.

    K.H. Anantha, C. Örnek, S. Ejnermark, A. Medvedeva, J. Sjöström, J. Pan, In situ AFM study of localized corrosion processes of tempered AISI 420 martensitic stainless steel: effect of secondary hardening. J. Electrochem. Soc. 164, C810–C818 (2017). https://doi.org/10.1149/2.1261713jes

    CAS  Article  Google Scholar 

  4. 4.

    D. Sebastian, C.-W. Yao, I. Lian, Multiscale corrosion analysis of superhydrophobic coating on 2024 aluminum alloy in a 3.5 wt% NaCl solution. MRS Commun. 10, 305–311 (2020). https://doi.org/10.1557/MRC.2020.24

    CAS  Article  Google Scholar 

  5. 5.

    D. Sebastian, C.-W. Yao, Simultaneous mapping of nanoscale topography and surface potential for the study of localized corrosion in 2024–T3 aluminum alloy and corrosion resistance introduced by a superhydrophobic coating. MRS Commun. 11(1), 70–77 (2021). https://doi.org/10.1557/S43579-021-00015-1

    Article  Google Scholar 

  6. 6.

    H. Masuda, Nanoscopic analysis of aqueous corrosion by scanning tunneling microscopy. Corrosion 52, 435–439 (1996). https://doi.org/10.5006/1.3292131

    CAS  Article  Google Scholar 

  7. 7.

    C. de Alwis, K.A. Perrine, In situ PM-IRRAS at the air/electrolyte/solid interface reveals oxidation of iron to distinct minerals. J. Phys. Chem. A 124, 6735–6744 (2020). https://doi.org/10.1021/acs.jpca.0c03592

    CAS  Article  Google Scholar 

  8. 8.

    A. Augustyniak, J. Tsavalas, W. Ming, Early detection of steel corrosion via “turn-on” fluorescence in smart epoxy coatings. ACS Appl. Mater. Interfaces 1, 2618–2623 (2009). https://doi.org/10.1021/am900527s

    CAS  Article  Google Scholar 

  9. 9.

    X. Liu, H. Spikes, J.S.S. Wong, In situ pH responsive fluorescent probing of localized iron corrosion. Corros. Sci. 87, 118–126 (2014). https://doi.org/10.1016/j.corsci.2014.06.016

    CAS  Article  Google Scholar 

  10. 10.

    A. Saini, L. Kisley, Fluorescence microscopy of biophysical protein dynamics in nanoporous hydrogels. J. Appl. Phys. 126, 81101 (2019). https://doi.org/10.1063/1.5110299

    CAS  Article  Google Scholar 

  11. 11.

    W.E. Moerner, A dozen years of single-molecule spectroscopy in physics, chemistry, and biophysics. J. Phys. Chem. B 106, 910–927 (2002). https://doi.org/10.1021/jp012992g

    CAS  Article  Google Scholar 

  12. 12.

    L. Kisley, Single molecule spectroscopy at interfaces. in: Spectrosc. Dyn. Single Mol. (Elsevier, Amsterdam, 2019), pp 117–161. https://doi.org/10.1016/b978-0-12-816463-1.00003-1.

  13. 13.

    J.B. Sambur, P. Chen, Approaches to single-nanoparticle catalysis. Annu. Rev. Phys. Chem. 65, 395–422 (2014). https://doi.org/10.1146/annurev-physchem-040513-103729

    CAS  Article  Google Scholar 

  14. 14.

    A. Rybina, M. Wirtz, D. Brox, R. Krämer, G. Jung, D.-P. Herten, Toward single-molecule catalysis. in Mol. Catal. (Wiley, Weinheim, 2014), pp. 53–80. https://doi.org/10.1002/9783527673278.ch3.

  15. 15.

    J.G. Smith, X. Zhang, P.K. Jain, Galvanic reactions at the single-nanoparticle level: tuning between mechanistic extremes. J. Mater. Chem. A 5, 11940–11948 (2017). https://doi.org/10.1039/C7TA03302H

    CAS  Article  Google Scholar 

  16. 16.

    A. Garcia, S.J. Saluga, D.J. Dibble, P.A. López, N. Saito, S.A. Blum, Does selectivity of molecular catalysts change with time? Polymerization imaged by single-molecule spectroscopy. Angew. Chem Int. Ed. 60, 1550–1555 (2021). https://doi.org/10.1002/anie.202010101

    CAS  Article  Google Scholar 

  17. 17.

    A. Saini, H. Messenger, L. Kisley, Fluorophores “turned-on” by corrosion reactions can be detected at the single-molecule level. ACS Appl. Mater. Interfaces 13, 2000–2006 (2021). https://doi.org/10.1021/acsami.0c18994

    CAS  Article  Google Scholar 

  18. 18.

    A. Augustyniak, W. Ming, Early detection of aluminum corrosion via “turn-on” fluorescence in smart coatings. Prog. Org. Coat. 71, 406–412 (2011). https://doi.org/10.1016/j.porgcoat.2011.04.013

    CAS  Article  Google Scholar 

  19. 19.

    M. Zhang, Y. Gao, M. Li, M. Yu, F. Li, L. Li, M. Zhu, J. Zhang, T. Yi, C. Huang, A selective turn-on fluorescent sensor for FeIII and application to bioimaging. Tetrahedron Lett. 48, 3709–3712 (2007). https://doi.org/10.1016/J.TETLET.2007.03.112

    CAS  Article  Google Scholar 

  20. 20.

    A. Augustyniak, In-Situ Early Detection of Metal Corrosion via “Turn-on” Fluorescence in “Smart” Epoxy Coatings (University of New Hampshire, Durham, New Hampshire, 2011)

    Google Scholar 

  21. 21.

    T. Hirayama, K. Okuda, H. Nagasawa, A highly selective turn-on fluorescent probe for iron(II) to visualize labile iron in living cells. Chem. Sci. 4, 1250–1256 (2013). https://doi.org/10.1039/C2SC21649C

    CAS  Article  Google Scholar 

  22. 22.

    J. Zhao, B.A. Bertoglio, M.J. Devinney, K.E. Dineley, A.R. Kay, The interaction of biological and noxious transition metals with the zinc probes FluoZin-3 and Newport Green. Anal. Biochem. 384, 34–41 (2009). https://doi.org/10.1016/J.AB.2008.09.019

    CAS  Article  Google Scholar 

  23. 23.

    I. Marszałek, A. Krȩzel, W. Goch, I. Zhukov, I. Paczkowska, W. Bal, Revised stability constant, spectroscopic properties and binding mode of Zn(II) to FluoZin-3, the most common zinc probe in life sciences. J. Inorg. Biochem. 161, 107–114 (2016). https://doi.org/10.1016/J.JINORGBIO.2016.05.009

    Article  Google Scholar 

  24. 24.

    T. Mukaide, Y. Hattori, N. Misawa, S. Funahashi, L. Jiang, T. Hirayama, H. Nagasawa, S. Toyokuni, Histological detection of catalytic ferrous iron with the selective turn-on fluorescent probe RhoNox-1 in a Fenton reaction-based rat renal carcinogenesis model. Free Radic. Res. 48, 990–995 (2014). https://doi.org/10.3109/10715762.2014.898844

    CAS  Article  Google Scholar 

  25. 25.

    K.R. Gee, Z.-L. Zhou, W.-J. Qian, R. Kennedy, Detection and imaging of zinc secretion from pancreatic β-cells using a new fluorescent zinc indicator. J. Am. Chem. Soc. 124, 776–778 (2002). https://doi.org/10.1021/JA011774Y

    CAS  Article  Google Scholar 

  26. 26.

    J. Schuster, J. Brabandt, C. von Borczyskowski, Discrimination of photoblinking and photobleaching on the single molecule level. J. Lumin. 127, 224–229 (2007). https://doi.org/10.1016/J.JLUMIN.2007.02.028

    CAS  Article  Google Scholar 

  27. 27.

    P. Chen, X. Zhou, H. Shen, N.M. Andoy, E. Choudhary, K.-S. Han, G. Liu, W. Meng, Single-molecule fluorescence imaging of nanocatalytic processes. Chem. Soc. Rev. 39, 4560 (2010). https://doi.org/10.1039/b909052p

    CAS  Article  Google Scholar 

  28. 28.

    C.R. Daniels, C. Reznik, C.F. Landes, Dye diffusion at surfaces: charge matters. Langmuir 26, 4807–4812 (2010). https://doi.org/10.1021/LA904749Z

    CAS  Article  Google Scholar 

  29. 29.

    J. Chen, A. Bremauntz, L. Kisley, B. Shuang, C.F. Landes, Super-resolution mbPAINT for optical localization of single-stranded DNA. ACS Appl. Mater. Interfaces 5, 9338–9343 (2013). https://doi.org/10.1021/am403984k

    CAS  Article  Google Scholar 

  30. 30.

    Kisley Research Group @ CWRU, Super-resolution imaging and single molecule kinetics MATLAB analysis, (n.d.). https://github.com/KisleyLabAtCWRU/SuperResKinetics. Accessed 7 July 2021

Download references

Acknowledgments

The authors would like to thank the laboratory of Prof. Strangi at the Case Western Reserve University for use of their fluorimeter. The authors thank the Case Western Reserve University College of Arts and Sciences for financial support and members of the Kisley Research Group for helpful discussion.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Anuj Saini or Lydia Kisley.

Ethics declarations

Conflict of interest

The authors declare that there are no known conflicts of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 695 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saini, A., Gatland, Z., Begley, J. et al. Investigation of fluorophores for single-molecule detection of anodic corrosion redox reactions. MRS Communications (2021). https://doi.org/10.1557/s43579-021-00096-y

Download citation