Skip to main content

Advertisement

Log in

Accelerated beta radiation aging of interlayer titanium nitride in gallium nitride contacts

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Currently, there is no good way to determine the influence of radiation on the aging of betavoltaic electrical contacts. This work tested a method to accelerate the aging of the contacts inside a betavoltaic by enhancing energy deposition within the interfacial region of interest. An electrical contact of gold-titanium on gallium nitride was aged by exposure to tritium beta particles and electrons in a beamline. The interface stoichiometry was compared to the electrical performance of the contact. The method to age the betavoltaic component could help predict the lifetime performance of the internal electrical contacts and provide assurance of deployment reliability.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Notes

  1. BNC stands for Bayonet Neill-Concelman. ConFlat® is a registered trademark of the Varian Corporation. NPT stands for National Pipe Taper. VCR® is a registered trademark of the Swagelok Company.

References

  1. A.A. Svintsov, A.A. Krasnov, M.A. Polikarpov, A.Y. Polyakov, E.B. Yakimov, Appl. Radiat. Isot. (2018). https://doi.org/10.1016/j.apradiso.2018.04.010

    Article  Google Scholar 

  2. S.J. Pearton, R. Deist, F. Ren, L. Liu, A.Y. Polyakov, J. Kim, J. Vac. Sci. Technol. 31, 050801 (2013)

    Article  Google Scholar 

  3. M. Köntges, S. Kurtz, C.E. Packard, U. Jahn, K.A, Berger, K. Kato, T. Friesen, H. Liu, M. Van Iseghem, Review of failures of photovoltaic modules (International Energy Agency Report - IEA-PVPS T13-01:2014) https://www.sunsniffer.de/images/imge_slide/IEA-PVPS_T13-01_2014_Review_of_Failures_of_Photovoltaic_Modules_Final_.pdf

  4. H.J. Engelmann, H. Saage, E. Zschech, Microelectron. Reliab. (2000). https://doi.org/10.1016/S0026-2714(00)00107-4

    Article  Google Scholar 

  5. K. Nordlund, S.J. Zinkle, A.E. Sand, F. Granberg, R.S. Averback, R.E. Stoller, T. Suzudo, L. Malerba, F. Banhart, W.J. Weber, F. Willaime, S.L. Dudarev, D. Simeone, J. Nucl. Mater. (2018). https://doi.org/10.1016/j.jnucmat.2018.10.027

    Article  Google Scholar 

  6. C. Zhou, J. Zhang, X. Wang, Y. Yang, P. Xu, P. Li, L. Zhang, Z. Chen, H. Feng, W. Wu, ECS J. Solid State Sci. Technol. (2021). https://doi.org/10.1149/2162-8777/abe423

    Article  Google Scholar 

  7. D.K. Wilson, J.P. Mitchell, J.D. Cuthbert, R.R. Blair, Effects of Radiation on Semiconductor Materials and Devices (1968) https://apps.dtic.mil/sti/pdfs/AD0672812.pdf

  8. L. Hubbard, C. Cowles, A. Prichard, G. Sevigny, J. Johns, D. Calderin Morales, L. Kovarik, E. Fuller, B. Matthews, D. Schwellenbach, MRS Adv. (2020). https://doi.org/10.1557/adv.2020.6

    Article  Google Scholar 

  9. M.H. Weik, Computer Science and Communications Dictionary (Springer, United States), p. 1397 (Radiation Effects on Electronics)

  10. K. E. Holbert, L. T. Clark, Radiation Hardened Electronics Destined for Severe Nuclear Reactor Environments (U.S. Department of Energy, 2016) https://doi.org/10.2172/1238384

  11. R. Bao, P.J. Brand, D.B. Chrisey, IEEE Trans. Electron Devices (2012). https://doi.org/10.1109/TED.2012.2187059

    Article  Google Scholar 

  12. T.R. Alam, M.A. Pierson, M.A. Prelas, IEEE Trans. Electron Devices (2018). https://doi.org/10.1109/TED.2018.2874652

    Article  Google Scholar 

  13. J.W. Murphy, L.F. Voss, C.D. Frye, Q. Shao, K. Kazkaz, M.A. Stoyer, R.A. Henderson, R.J. Nikolic, AIP Adv. (2019). https://doi.org/10.1063/1.5097775

    Article  Google Scholar 

  14. K. Hogan, M. Litz, F. Shahedipour-Sandvik, Appl. Radiat. Isot. (2019). https://doi.org/10.1016/j.apradiso.2018.12.032

    Article  Google Scholar 

  15. T. Kang, J. Kim, S. Park, K. Son, K. Park, J. Lee, S. Kang, B.G. Choi, ETRI J. (2019). https://doi.org/10.4218/etrij.2018-0022

    Article  Google Scholar 

  16. J. Russo, M.S. Litz, I.I. William Ray, H. Berk, H. Cho, D.I. Bigio, A. Weltz, T.R. Alam, Int. J. Energy Res. (2019). https://doi.org/10.1002/er.4563

    Article  Google Scholar 

  17. M.G. Spencer, T. Alam, Appl. Phys. Rev. (2019). https://doi.org/10.1063/1.5123163

    Article  Google Scholar 

  18. N.R. Mucha, J. Som, S. Shaji, S. Fialkova, P.R. Apte, B. Balasubramanian, J.E. Shield, M. Anderson, D. Kumar, J. Mater. Sci. (2020). https://doi.org/10.1007/s10853-019-04278-x

    Article  Google Scholar 

  19. J.M. Chappé, N. Martin, J. Lintymer, F. Sthal, G. Terwagne, J. Takadoum, Appl. Surf. Sci. (2007). https://doi.org/10.1016/j.apsusc.2006.12.004

    Article  Google Scholar 

  20. X. Yang, Y. Lin, J. Liu, W. Liu, Q. Bi, X. Song, J. Kang, F. Xu, L. Xu, M.N. Hedhili, D. Baran, X. Zhang, T.D. Anthopoulos, S. De Wolf, Adv. Mater. (2020). https://doi.org/10.1002/adma.202002608

    Article  Google Scholar 

  21. D.S. Williams, F.A. Baiocchi, R.C. Beairsto, J.M. Brown, R.V. Knoell, S.P. Murarka, J. Vac. Sci. Technol. B (1987). https://doi.org/10.1116/1.583654

    Article  Google Scholar 

Download references

Acknowledgments

This research was conducted under the Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory, a multiprogram national laboratory operated by Battelle for the U.S. Department of Energy. The authors gratefully thank the Environmental Molecular Science Laboratory (EMSL), a DOE Office of Science User Facility for characterization access, computational time, and expertise. Specifically, the authors thank Dr. Scott Lea for his coordination efforts. This manuscript has been authored by Mission Support and Test Services LLC under Contract No. DE-NA0003624 with the U.S. Department of Energy/National Nuclear Security Administration. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide to publish or reproduce the published form of this manuscript, or allow others do so, for United States Government purposes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lance Hubbard.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 33 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hubbard, L., Fuller, E., Allred, J. et al. Accelerated beta radiation aging of interlayer titanium nitride in gallium nitride contacts. MRS Communications 12, 24–29 (2022). https://doi.org/10.1557/s43579-021-00092-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-021-00092-2

Keywords

Navigation