Skip to main content
Log in

Production of nickel-doped ZnO-based NTC thermistor via combustion reaction

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

The present work describes the effect of Ni on the structure, gap and electrical resistance of the ZnO semiconductor matrix, produced through the combustion reaction. Furthermore, the influence of temperature on the electrical resistance of \({\text{Zn}}_{1 - x} {\text{Ni}}_{x} {\text{O}}\) (x = 0.05; x = 0.1) systems was evaluated. As they were sintered at 1050°C, electrical resistance sensitivity when thermally stimulated, ranging from 13.865 to 0.897 MΩ its electrical resistance, for the system with x = 0.05 and 3.975 to 0.215 MΩ for x = 0.1 for a variation of temperature between 28 and 120°C. Our results demonstrated the feasibility of producing NTC-type thermistors with the \({\text{Zn}}_{1 - x} {\text{Ni}}_{x} {\text{O}}\) system, obtained through combustion reaction.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Cauduro, André Luís Fernandes. Synthesis, photoluminescence and electrical characterization of ZnO nanostructures. Master's Dissertation, Federal University of Rio Grande do Sul 2012

  2. Sorrentino Neto, Antônio et al. Synthesis, Characterization and Magnetic Properties of Nickel-Copper Ferrites. Masters dissertation. Federal University of Paraíba, 2016

  3. A. Janotti, C.G. Van de Walle, Rep. Prog. Phys. (2009). https://doi.org/10.1088/0034-4885/72/12/126501

    Article  Google Scholar 

  4. R. Elilarassi, G. Chandrasekaran, J. Mater. Sci.: Mater. Electron. (2011). https://doi.org/10.1007/s10854-010-0206-8

    Article  Google Scholar 

  5. J.M. Ferreira Jr., O.C. Cordeiro, Y.V. França, E.N.S. Muccillo, J.R. Matos, R. Muccillo, Ceramics. (2007). https://doi.org/10.1590/S0366-69132007000400018

    Article  Google Scholar 

  6. A. Morais, R.A. Torquato, U.C. Silva, C. Salvador, C. Chesman, Ceramics (2018). https://doi.org/10.1590/0366-69132018643722463

    Article  Google Scholar 

  7. S. Zhao, P. Li, Y. Wei, Powder Technol. (2012). https://doi.org/10.1016/j.powtec.2012.03.024

    Article  Google Scholar 

  8. A. Mhamdi, R. Mimouni, A. Amlouk, M. Amlouk, S. Belgacem, J Alloys Compd. (2014). https://doi.org/10.1016/j.jallcom.2014.04.007

    Article  Google Scholar 

  9. M. Saleem, S. Atiq, S. Naseem, S.A. Siddiqi, J Korean Phys. Soc. (2012). https://doi.org/10.3938/jkps.60.1772

    Article  Google Scholar 

  10. H. Çolak, O. Türkoğlu, J. Mater. Sci. Technol. (2011). https://doi.org/10.1016/S1005-0302(11)60168-0

    Article  Google Scholar 

  11. R.W.A. Scarr, R.A. Setterington, Electron. Commun. Eng. (1960). https://doi.org/10.1049/pi-b-2.1960.0136

    Article  Google Scholar 

  12. S.M. Rezende, Materials and Electronic Devices, 3rd ed. (Library of Physics, 2004).

  13. G. Gralik, G. Biava, Materia-Rio de Janeiro, V 24, N 4, (2019)

  14. M. Zhang, M. Li, H. Zhang, K. Tuokedaerhan, A. Chang, J. Alloys Compd. (2019). https://doi.org/10.1016/j.jallcom.2019.05.200

    Article  Google Scholar 

  15. O.S. Aleksic, M.V. Nikolic, M.D. Lukovic, N. Nikolic, B.M. Radojcic, M. Radovanovic, Z. Djuric, M. Mitric, P.M. Nikolic, Mater. Sci. Eng. B (2013). https://doi.org/10.1016/j.mseb.2012.11.003

    Article  Google Scholar 

  16. S. Thota, T. Dutta, J. Kumar, J. Phys. Condens. Matter (2006). https://doi.org/10.1088/0953-8984/18/8/012

    Article  Google Scholar 

  17. D. Wu, M. Yang, Z. Huang, G. Yin, X. Liao, Y. Kang, X. Chen, H. Wang, J. Colloid Interface Sci. (2009). https://doi.org/10.1016/j.jcis.2008.10.067

    Article  Google Scholar 

  18. D. Hou, R. Zhao, Y. Wei, C. Zhen, C. Pan, G. Tang, Curr Appl Phys. (2010). https://doi.org/10.1016/j.cap.2009.05.007

    Article  Google Scholar 

  19. C.J. Cong, J.H. Hong, Q.Y. Liu, L. Liao, K.L. Zhang, Solid State Commun. (2006). https://doi.org/10.1016/j.ssc.2006.04.020

    Article  Google Scholar 

  20. H. Kedesdy, A. Drukalsky, J Am Chem Soc. (1954). https://doi.org/10.1021/ja01652a013

    Article  Google Scholar 

  21. A.C.F.M. Costa, R.H.G.A. Kiminami, M.R. Morelli, Combustion synthesis processing of nanoceramics. Handbook of nanoceramics and their based nanodevices (Synthesis and Processing). (Ed. American Scientific Publishers, 2009) pp.375–392

  22. S.R. Jain, K.C. Adiga, V.R. Pai Verneker, Combust Flame. (1981) https://doi.org/10.1016/0010-2180(81)90111-5

  23. J. Tauc, Mater Res Bull. (1968). https://doi.org/10.1016/0025-5408(68)90023-8

    Article  Google Scholar 

  24. J.M.D. Coey, In Donath M., Nolting W. (eds) Local-Moment Ferromagnets. Lecture Notes in Physics, vol 678. (Springer, Berlin, Heidelberg, 2005) pp 185–198 https://doi.org/10.1007/11417255_12

  25. T.M. Mendes, USP/SIBi. (2008) https://doi.org/10.11606/D.3.2008.tde-15082008-15340

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wictor Magnus Patrício Araújo de Lima.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Lima, W.M.P.A., de Carvalho Filho, L.H., Raimundo, R.A. et al. Production of nickel-doped ZnO-based NTC thermistor via combustion reaction. MRS Communications 11, 650–655 (2021). https://doi.org/10.1557/s43579-021-00091-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-021-00091-3

Keywords

Navigation