Skip to main content

Ultraclean hybrid poplar lignins via liquid–liquid fractionation using ethanol–water solutions


As recovered from the byproducts stream of a cellulosic ethanol biorefinery, the renewable biopolymer lignin is too impure and polydisperse for many proposed applications. By mixing a hybrid poplar lignin with hot ethanol–water solutions, two liquid phases, one polymer-rich and one solvent-rich, are created. This liquid–liquid equilibrium phenomenon was used to generate solvated (and thus liquefied) lignin fractions of controlled molecular weight for which the impurities analyses for sugars and ash were near or below the limits of detection. Additionally, those carbohydrates and metals impurities end up highly concentrated in a single process stream also having potential value.

Graphic abstract

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3

Data availability

Supplemental tables have been provided that contain the relevant collected data for the experiments of this work.


  1. 1.

    R.J.A. Gosselink, E. De Jong, B. Guran, A. Abächerli, Ind. Crops Prod. 20, 2 (2004).

    CAS  Article  Google Scholar 

  2. 2.

    R. Ahorsu, F. Medina, M. Constantí, Energies 11, 12 (2018).

    CAS  Article  Google Scholar 

  3. 3.

    M.V. Tsvetkov, E.A. Salganskii, Russ. J. Appl. Chem. 91, 7 (2018).

    Article  Google Scholar 

  4. 4.

    R. Vanholme, B. Demedts, K. Morreel, J. Ralph, W. Boerjan, Plant Physiol. 153, 3 (2010).

    CAS  Article  Google Scholar 

  5. 5.

    D. Stewart, Ind. Crops Prod. 27, 2 (2008).

    CAS  Article  Google Scholar 

  6. 6.

    J. Jin, J. Ding, A. Klett, M.C. Thies, A.A. Ogale, A.C.S. Sustain, Chem. Eng. 6, 11 (2018).

    CAS  Article  Google Scholar 

  7. 7.

    M. Alinejad, C. Henry, S. Nikafshar, A. Gondaliya, S. Bagheri, N. Chen, S.K. Singh, D.B. Hodge, M. Nejad, Polymers 11, 7 (2019).

    CAS  Article  Google Scholar 

  8. 8.

    A. Tejado, C. Peña, J. Labidi, J.M. Echeverria, I. Mondragon, Bioresour. Technol. 98, 8 (2007).

    CAS  Article  Google Scholar 

  9. 9.

    W. Schutyser, T. Renders, S. Van den Bosch, S. Koelewijn, G.T. Beckham, B.F. Sels, Chem. Soc. Rev. 47, 852–908 (2018).

    CAS  Article  Google Scholar 

  10. 10.

    A. Reimann, K. Kringstad, Holzforschung 42, 2 (1988).

    Article  Google Scholar 

  11. 11.

    A. Duval, F. Vilaplana, C. Crestini, M. Lawoko, Holzforschung 70, 1 (2016).

    CAS  Article  Google Scholar 

  12. 12.

    C.G. Boeriu, F.I. Fiţigău, R.J.A. Gosselink, A.E. Frissen, J. Stoutjesdijk, F. Peter, Ind. Crops Prod. 62, 481–490 (2014).

    CAS  Article  Google Scholar 

  13. 13.

    H. Sadeghifar, T. Wells, R.K. Le, F. Sadeghifar, J.S. Yuan, A. Jonas Ragauskas, ACS Sustain. Chem. Eng. 5, 1 (2017).

    CAS  Article  Google Scholar 

  14. 14.

    A.S. Jääskeläinen, T. Liitiä, A. Mikkelson, T. Tamminen, Ind. Crops Prod. 103, 51–58 (2017).

    CAS  Article  Google Scholar 

  15. 15.

    W.M. Goldmann, J. Ahola, M. Mikola, J. Tanskanen, Sep. Purif. Technol. 209, 826–832 (2019).

    CAS  Article  Google Scholar 

  16. 16.

    W. Sui, T. Pang, G. Wang, C. Liu, A.M. Parvez, C. Si, C. Li, Molecules 25, 11 (2020).

    CAS  Article  Google Scholar 

  17. 17.

    A.S. Klett, P.V. Chappell, M.C. Thies, Chem. Commun. 51, 64 (2015).

    CAS  Article  Google Scholar 

  18. 18.

    G.W. Tindall, S. Temples, M. Cooper-Robinson, V. Bécsy-Jakab, D. Hodge, M. Nejad, M.C. Thies, Ind. Eng. Chem. Res. (accepted for publication, 2021)

  19. 19.

    L.H. Sperling, Introduction to Physical Polymer Science, 4th edn. (Wiley, New York, 2015), pp. 145–195

    Google Scholar 

  20. 20.

    G.W. Tindall, J. Chong, E. Miyasato, M.C. Thies, Chemsuschem 13, 17 (2020).

    CAS  Article  Google Scholar 

  21. 21.

    D.G. Kulas, M.C. Thies, D.R. Shonnard, A.C.S. Sustain, Chem. Eng. 9, 15 (2021).

    CAS  Article  Google Scholar 

  22. 22.

    J.D. Seader, E.J. Henley, D.K. Roper, Separation Process Principles, 3rd edn. (Wiley, New York, 2010), pp. 85–138

    Google Scholar 

  23. 23.

    M. Guo, J. Littlewood, J. Joyce, R. Murphy, Green Chem. 16, 11 (2014).

    Article  Google Scholar 

  24. 24.

    A. Sluiter, B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton, D. Crocker, Determination of Structural Carbohydrates and Lignin in Biomass: Laboratory Analytical Procedure (LAP)

  25. 25.

    G. Gellerstedt, E. Sjöholm, I. Brodin, Open Agric. J. (2010).

    Article  Google Scholar 

Download references


This work was supported by the U.S. Department of Energy (DOE) Energy Efficiency & Renewable Energy (EERE) Bioenergy Technologies Office (BETO) under agreement no. EE0008502. Partial equipment support was provided by the Center for Advanced Engineering Fibers and Films at Clemson University.

Author information



Corresponding author

Correspondence to Mark Thies.

Ethics declarations

Conflict of interest

The authors of this work have no conflicts of interests to declare that are relevant to the content of this article.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 15 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tindall, G., Lynn, B., Fitzgerald, C. et al. Ultraclean hybrid poplar lignins via liquid–liquid fractionation using ethanol–water solutions. MRS Communications 11, 692–698 (2021).

Download citation