Skip to main content

Nucleation of voids at Li-metal–ceramic–electrolyte interfaces

A Correction to this article was published on 21 September 2021

This article has been updated


Electrical currents that are locally concentrated due to spatially variable interface resistance at the lithium-metal–ceramic–electrolyte interface can lead to the nucleation of voids. The Gibbs free energy barrier to nucleation is derived in terms of the electrochemical driving force, which favors, and the interfacial energies, which oppose the development of an embryo, the first step in the formation of a void. Nucleation can be suppressed by low values of the area-specific resistance (ASR) of the cell, and by chemical design of the interface that produces a high value for the contact angle. It is proposed that void nucleation is the precursor to the formation of dendrites.

Graphical abstract

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4

Change history


  1. 1.

    H. Koshikawa, S. Matsuda, K. Kamiya, M. Miyayama, Y. Kubo, K. Uosaki, K. Hashimoto, S. Nakanishi, Dynamic changes in charge-transfer resistance at Li metal/Li7La3Zr2O12 interfaces during electrochemical Li dissolution/deposition cycles. J. Power Sources 376, 147–151 (2018).

    CAS  Article  Google Scholar 

  2. 2.

    M.J. Wang, R. Choudhury, J. Sakamoto, Characterizing the Li–solid–electrolyte interface dynamics as a function of stack pressure and current density. Joule. 3, 2165–2178 (2019).

    CAS  Article  Google Scholar 

  3. 3.

    T. Krauskopf, B. Mogwitz, C. Rosenbach, W.G. Zeier, J. Janek, Diffusion limitation of lithium metal and Li–Mg alloy anodes on LLZO type solid electrolytes as a function of temperature and pressure. Adv. Energy Mater. 9, 1902568 (2019).

    CAS  Article  Google Scholar 

  4. 4.

    J. Kasemchainan, S. Zekoll, D. Spencer Jolly, Z. Ning, G.O. Hartley, J. Marrow, P.G. Bruce, Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells. Nat. Mater. 18, 1105–1111 (2019).

    CAS  Article  Google Scholar 

  5. 5.

    C.A. Geiger, E. Alekseev, B. Lazic, M. Fisch, T. Armbruster, R. Langner, M. Fechtelkord, N. Kim, T. Pettke, W. Weppner, Crystal chemistry and stability of “Li7La3Zr2O12” garnet: a fast lithium-ion conductor. Inorg. Chem. (2010).

    Article  Google Scholar 

  6. 6.

    T. Clemenceau, N. Andriamady, R. Raj, Influence of temperature and ASR on the critical current density in lithium-metal–ceramic cells. MRS Commun. (2021).

    Article  Google Scholar 

  7. 7.

    T. Krauskopf, F.H. Richter, W.G. Zeier, J. Janek, Physicochemical concepts of the lithium metal anode in solid-state batteries. Chem. Rev. 120, 7745–7794 (2020).

    CAS  Article  Google Scholar 

  8. 8.

    A. Badran, T. Clemenceau, N. Andriamady, D. Marshall, R. Raj, Current constriction of Li-ion transport across lithium metal–ceramic electrolyte interface: Imaged with X-ray tomography. MRS Commun. (2021).

    Article  Google Scholar 

  9. 9.

    T. Krauskopf, H. Hartmann, W.G. Zeier, J. Janek, Toward a fundamental understanding of the lithium metal anode in solid-state batteries—an electrochemo-mechanical study on the garnet-type solid electrolyte Li6.25Al0.25La3Zr2O12. ACS Appl. Mater. Interfaces 11, 14463–14477 (2019).

    CAS  Article  Google Scholar 

  10. 10.

    J.-M. Doux, H. Nguyen, D.H.S. Tan, A. Banerjee, X. Wang, E.A. Wu, C. Jo, H. Yang, Y.S. Meng, Stack pressure considerations for room-temperature all-solid-state lithium metal batteries. Adv. Energy Mater. 10, 1903253 (2020).

    CAS  Article  Google Scholar 

  11. 11.

    X. Zhang, Q.J. Wang, K.L. Harrison, S.A. Roberts, S.J. Harris, Pressure-driven interface evolution in solid-state lithium metal batteries. Cell Rep. Phys. Sci. 1, 100012 (2020).

    Article  Google Scholar 

  12. 12.

    R. Raj, Stack pressure and critical current density in Li-metal cells: The role of mechanical deformation. Acta Mater. 215, 117076 (2021).

    CAS  Article  Google Scholar 

  13. 13.

    R. Raj, M.F. Ashby, Intergranular fracture at elevated temperature. Acta Metall. 23, 653–666 (1975).

    Article  Google Scholar 

  14. 14.

    R. Raj, Nucleation of cavities at second phase particles in grain boundaries. Acta Metall. 26, 995–1006 (1978).

    CAS  Article  Google Scholar 

  15. 15.

    L. Vitos, A.V. Ruban, H.L. Skriver, J. Kollár, The surface energy of metals. Surf. Sci. 411, 186–202 (1998).

    CAS  Article  Google Scholar 

  16. 16.

    D. Turnbull, Kinetics of heterogeneous nucleation. J. Chem. Phys. 18, 198–203 (1950).

    CAS  Article  Google Scholar 

  17. 17.

    R. Raj, J. Wolfenstine, Current limit diagrams for dendrite formation in solid-state electrolytes for Li-ion batteries. J. Power Sources 343, 119–126 (2017).

    CAS  Article  Google Scholar 

Download references


The work on creep fracture was carried out in the seventies when it was supported by the Air Force Office of Scientific Research.

Author information



Corresponding author

Correspondence to Rishi Raj.

Ethics declarations

Conflict of interest

I do not have any conflict of interest related to the content in this manuscript.

Additional information

This article was updated to correct the fourth paragraph in the introduction. Due to errors introduced during the production process Ω appeared as W throughout the paragraph.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Raj, R. Nucleation of voids at Li-metal–ceramic–electrolyte interfaces. MRS Communications 11, 644–649 (2021).

Download citation


  • Void formation
  • Lithium metal
  • Ceramic electrolytes
  • Current density
  • ASR