Skip to main content

Dislocation evolution in nanoscratching the CVD diamond film: Discrete dislocation dynamics simulation and experiments


Dislocation behavior has been considered as the crucial reason for micro-scale plasticity and micro-damage of the diamond. In this research, based on the theory of discrete dislocation dynamics (DDD), the nanoscratch model was established to investigate the dislocation evolution and stress distributions of the chemical vapored deposition (CVD) diamond film, and further supported by experimental study. Well-designed nanoscratch experiments were performed to validate the simulation results. It can be found that dislocation multiplication occurred along the scratch path. Besides, the dislocation pile-up and local stress concentration are easier to be found inside the smaller grain stress concentration. And it causes the occurrence of crack initiation near the grain boundary.

Graphic abstract

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4


  1. 1.

    K. Bobzin, High-performance coatings for cutting tools. CIRP J. Manuf. Sci. Technol. 18, 1–9 (2017)

    Article  Google Scholar 

  2. 2.

    H. Hei, J. Ma, X. Li, S. Yu, B. Tang, Y. Shen, W. Tang, Preparation and performance of chemical vapor deposition diamond coatings synthesized onto the cemented carbide micro-end mills with a SiC interlayer. Surf. Coat. Technol. 261, 272–277 (2015)

    CAS  Article  Google Scholar 

  3. 3.

    Q.S. Bai, Y.X. Yao, H.Z. Zhang, P. Bex, G. Zhang, Wear of CVD thick film diamond cutter while machining laminated flooring. J. Harbin Inst. Technol. 13, 151–155 (2016)

    Google Scholar 

  4. 4.

    C. Kuo, C. Wang, S. Ko, Wear behaviour of CVD diamond-coated tools in the drilling of woven CFRP composites. Wear 398–399, 1–12 (2018)

    Article  Google Scholar 

  5. 5.

    D. Hinzmann, K. Böttcher, W. Reimers, E. Uhlmann, Ex situ residual stress analysis of chemical vapor deposited diamond coated cutting tools by synchrotron X-ray diffraction in transmission geometry. Adv. Eng. Mater. (2021).

    Article  Google Scholar 

  6. 6.

    X. Yan, J. Wei, K. An, J. Liu, L. Chen, X. Zhang, C. Li, Graphitization of CVD diamond grain boundaries during transient heat treatment. Diam. Relat. Mater. 116, 108433 (2021)

    CAS  Article  Google Scholar 

  7. 7.

    D.J. Weidner, Y. Wang, M.T. Vaughan, Strength of diamond. Science 266, 419–422 (1994)

    CAS  Article  Google Scholar 

  8. 8.

    P.J. Heaney, A.V. Sumant, C.D. Torres, R.W. Carpick, F.E. Pfefferkorn, Diamond coatings for micro end mills: enabling the dry machining of aluminum at the micro-scale. Diam. Relat. Mater. 17, 223–233 (2008)

    CAS  Article  Google Scholar 

  9. 9.

    H. Wang, X. Song, X. Wang, F. Sun, Tribological performance and wear mechanism of smooth ultrananocrystalline diamond films. J. Mater. Process. Technol. 290, 116993 (2021)

    CAS  Article  Google Scholar 

  10. 10.

    Rusnaldy, T.J. Ko, H.S. Kim, Micro-end-milling of single-crystal silicon. Int. J. Mach. Tool Manuf. 47, 2111–2119 (2007)

    Article  Google Scholar 

  11. 11.

    K. An, L. Chen, X. Yan, X. Jia, Y. Zhao, Y. Zheng, J. Liu, J. Wei, F. Lu, C. Li, Fracture behavior of diamond films deposited by DC arc plasma jet CVD. Ceram. Int. 44, 13402–13408 (2018)

    CAS  Article  Google Scholar 

  12. 12.

    M.P. Gaukroger, P.M. Martineau, M.J. Crowder, I. Friel, S.D. Williams, D.J. Twitchen, X-ray topography studies of dislocations in single crystal CVD diamond. Diam. Relat. Mater. 17, 262–269 (2018)

    Article  Google Scholar 

  13. 13.

    A. Mussi, D. Eyidi, A. Shiryaev, J. Rabier, TEM observations of dislocations in plastically deformed diamond. Phys. Status Solidi 210, 191–194 (2013)

    CAS  Article  Google Scholar 

  14. 14.

    S. Ogata, J. Li, Toughness scale from first principles. J. Appl. Phys. 106, 113534 (2009)

    Article  Google Scholar 

  15. 15.

    M.G.J. Veprek-Heijman, R.G. Veprek, A.S. Argon, D.M. Parks, S. Veprek, Non-linear finite element constitutive modeling of indentation into super- and ultrahard materials: The plastic deformation of the diamond tip and the ratio of hardness to tensile yield strength of super- and ultrahard nanocomposites. Surf. Coat. Technol. 203, 3385–3391 (2009)

    CAS  Article  Google Scholar 

  16. 16.

    E.J. Brookes, P. Greenwood, G. Xing, Friction and wear of synthetic diamond. Int. J. Refract. Met. Hard Mater. 17, 69–77 (1999)

    CAS  Article  Google Scholar 

  17. 17.

    W.J. Zong, T. Sun, D. Li, K. Cheng, Design criterion for crystal orientation of diamond cutting tool. Diam. Relat. Mater. 18, 642–650 (2009)

    CAS  Article  Google Scholar 

  18. 18.

    E. Van de Giessen, A. Needleman, Discrete dislocation plasticity: a simple planar model. Model. Simul. Mater. Sci. Eng. 3, 689–735 (1995)

    Article  Google Scholar 

  19. 19.

    M. Diehl, Review and outlook: mechanical, thermodynamic, and kinetic continuum modelling of metallic materials at the grain scale. MRS Commun. 7, 735–746 (2017)

    CAS  Article  Google Scholar 

  20. 20.

    A.H.W. Ngan, Size effects of micrometer-scaled metals—the search continues for materials containing real microstructures. MRS Commun. 7, 131–140 (2017)

    CAS  Article  Google Scholar 

  21. 21.

    S.S. Quek, Z. Wu, Y.W. Zhang, D.J. Srolovitz, Polycrystal deformation in a discrete dislocation dynamics framework. Acta Mater. 75, 92–105 (2014)

    CAS  Article  Google Scholar 

  22. 22.

    J. Bai, Q. Bai, Z. Tong, C. Hu, X. He, Evolution of surface grain structure and mechanical properties in orthogonal cutting of titanium alloy. J. Mater. Res. 31, 3919–3929 (2016)

    CAS  Article  Google Scholar 

  23. 23.

    S. Olarnrithinun, Fatigue crack growth from a cracked elastic particle into a ductile matrix. Philos. Mag. 88, 3565–3583 (2008)

    Article  Google Scholar 

  24. 24.

    B.L. Hansen, I.J. Beyerlein, C.A. Bronkhorst, E.K. Cerreta, D. Dennis-Koller, A dislocation-based multi-rate single crystal plasticity model. Int. J. Plast. 44, 129–146 (2013)

    CAS  Article  Google Scholar 

  25. 25.

    S.M. Keralavarma, W.A. Curtin, Strain hardening in 2D discrete dislocation dynamics simulations: a new ‘2.5D’ algorithm. J. Mech. Phys. Solids 95, 132–146 (2016)

    Article  Google Scholar 

  26. 26.

    Q. Bai, J. Bai, C. Hu, H. Guo, Investigation on the dislocation evolution in nanoindentation with 2.5D discrete dislocation dynamics simulation and experiment. Mater. Sci. Eng. A-Struct. 730, 84–91 (2018)

    CAS  Article  Google Scholar 

  27. 27.

    Z. Zhuang, Y. Cui, Y. Gao, Z. Liu, Advances in discrete dislocation mechanism on submicro crystal atypical plasticity. Adv. Mech. 41, 647–667 (2011). ((In Chinese))

    Google Scholar 

  28. 28.

    F. Shahsavari, M. Ehteshamzadeh, M.R. Naimi-Jamal, A. Irannejad, Nanoindentation and nanoscratch behaviors of DLC films growth on different thickness of Cr nanolayers. Diam. Relat. Mater. 70, 76–82 (2016)

    CAS  Article  Google Scholar 

  29. 29.

    S. Lu, B. Zhang, X. Li, J. Zhao, M. Zaiser, H. Fan, X. Zhang, Grain boundary effect on nanoindentation: a multiscale discrete dislocation dynamics model. J. Mech. Phys. Solids 126, 117–135 (2019)

    CAS  Article  Google Scholar 

  30. 30.

    Z.H. Li, C.T. Hou, M.S. Huang, C.J. Ouyang, Strengthening mechanism in micro-polycrystals with penetrable grain boundaries by discrete dislocation dynamics simulation and Hall-Petch effect. Comput. Mater. Sci. 46, 1124–1134 (2009)

    CAS  Article  Google Scholar 

  31. 31.

    C. Lemarchand, B. Devincre, L.P. Kubin, Homogenization method for a discrete-continuum simulation of dislocation dynamics. J. Mech. Phys. Solids 49, 1969–1982 (2001)

    Article  Google Scholar 

  32. 32.

    J. Bai, Q. Bai, Z. Tong, Multiscale analyses of surface failure mechanism of single crystal silicon during micro-milling process. Materials 10, 1424 (2017)

    Article  Google Scholar 

  33. 33.

    A. Tallaire, T. Ouisse, A. Lantreibecq, R. Cours, M. Legros, H. Bensalah, J. Barjon, V. Mille, O. Brinza, J. Achard, Identification of dislocations in synthetic chemically vapor deposited diamond single crystals. Cryst. Growth Des. 16(5), 2741–2746 (2016)

    CAS  Article  Google Scholar 

  34. 34.

    A. Tallaire, M. Kasu, K. Ueda, T. Makimoto, Origin of growth defects in CVD diamond epitaxial films. Diam. Relat. Mater. 17(1), 60–65 (2008)

    CAS  Article  Google Scholar 

  35. 35.

    S. Mandal, Nucleation of diamond films on heterogeneous substrates: a review. RSC Adv. 11(17), 10159–10182 (2021)

    CAS  Article  Google Scholar 

  36. 36.

    K. Kanda, S. Takehana, S. Yoshida et al., Application of diamond-coated cutting tools. Surf. Coat. Technol. 73(1–2), 115–120 (1995)

    CAS  Article  Google Scholar 

  37. 37.

    I. De Wolf, Stress measurements in Si microelectronics devices using Raman spectroscopy. J. Raman Spectrosc. 30(10), 877–883 (1999)

    Article  Google Scholar 

  38. 38.

    K. Ichikawa, T. Shimaoka, Y. Kato, S. Koizumi, T. Teraji, Dislocations in chemical vapor deposition diamond layer detected by confocal Raman imaging. J. Appl. Phys. 128(15), 155302 (2020)

    Article  Google Scholar 

Download references


This research work was jointly supported by the National Natural Science Foundation of China (Grant No. 52075129)

Author information



Corresponding author

Correspondence to Qingshun Bai.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Bai, Q., Bai, J. et al. Dislocation evolution in nanoscratching the CVD diamond film: Discrete dislocation dynamics simulation and experiments. MRS Communications 11, 619–627 (2021).

Download citation


  • Chemical vapor deposition (CVD) (deposition)
  • Diamond
  • Microscale
  • Dislocations