Skip to main content

Molecular-level investigation on the spallation of polyurea

Abstract

We used molecular dynamics (MD) simulations to investigate the nanoscale mechanism associated with the spallation of polyurea, which allowed us to test some assumptions commonly made in the interpretation of similar experiments on the macroscale. The spall strength was computed by following two methods: (i) The indirect method (from the free surface velocity history—commonly used in experiments) (ii) A direct method (from the atomic stresses in the spall region—accessible only in MD). Our results show that the spall strength computed from the direct method is consistently higher than that obtained from the indirect method.

Graphic abstract

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request. The MD model used in the study is available at https://zenodo.org/record/5099542#.YO5HU-hKhPY.

References

  1. 1.

    Y. Sun, Y.-C.M. Wu, D. Veysset, S.E. Kooi, W. Hu, T.M. Swager, K.A. Nelson, A.J. Hsieh, Molecular dependencies of dynamic stiffening and strengthening through high strain rate microparticle impact of polyurethane and polyurea elastomers. Appl. Phys. Lett. 115, 093701 (2019). https://doi.org/10.1063/1.5111964

    CAS  Article  Google Scholar 

  2. 2.

    Y. Sun, S.E. Kooi, K.A. Nelson, A.J. Hsieh, D. Veysset, Impact-induced glass-to-rubber transition of polyurea under high-velocity temperature-controlled microparticle impact. Appl. Phys. Lett. 117, 021905 (2020). https://doi.org/10.1063/5.0013081

    CAS  Article  Google Scholar 

  3. 3.

    S.A. Tekalur, A. Shukla, K. Shivakumar, Blast resistance of polyurea based layered composite materials. Compos. Struct. 84, 271–281 (2008). https://doi.org/10.1016/j.compstruct.2007.08.008

    Article  Google Scholar 

  4. 4.

    L. Xue, W. Mock, T. Belytschko, Penetration of DH-36 steel plates with and without polyurea coating. Mech. Mater. 42, 981–1003 (2010). https://doi.org/10.1016/j.mechmat.2010.08.004

    Article  Google Scholar 

  5. 5.

    D. Veysset, J.-H. Lee, M. Hassani, S.E. Kooi, E.L. Thomas, K.A. Nelson, High-velocity micro-projectile impact testing. Appl. Phys. Rev. 8, 011319 (2021). https://doi.org/10.1063/5.0040772

    CAS  Article  Google Scholar 

  6. 6.

    M.A.N. Dewapriya, R.E. Miller, Molecular dynamics study of the penetration resistance of multilayer polymer/ceramic nanocomposites under supersonic projectile impacts. Extreme Mech. Lett. 44, 101238 (2021). https://doi.org/10.1016/j.eml.2021.101238

    Article  Google Scholar 

  7. 7.

    M.A.N. Dewapriya, R.E. Miller, Energy absorption mechanisms of nanoscopic multilayer structures under ballistic impact loading. Comput. Mater. Sci. 195, 110504 (2021). https://doi.org/10.1016/j.commatsci.2021.110504

    CAS  Article  Google Scholar 

  8. 8.

    M. Manav, M. Ortiz, Molecular dynamics study of the shock response of polyurea. Polymer 212, 123109 (2021). https://doi.org/10.1016/j.polymer.2020.123109

    CAS  Article  Google Scholar 

  9. 9.

    T.C. O’Connor, R.M. Elder, Y.R. Sliozberg, T.W. Sirk, J.W. Andzelm, M.O. Robbins, Molecular origins of anisotropic shock propagation in crystalline and amorphous polyethylene. Phys. Rev. Mater. 2, 035601 (2018). https://doi.org/10.1103/PhysRevMaterials.2.035601

    Article  Google Scholar 

  10. 10.

    R.M. Elder, T.C. O’Connor, T.L. Chantawansri, Y.R. Sliozberg, T.W. Sirk, I.-C. Yeh, M.O. Robbins, J.W. Andzelm, Shock-wave propagation and reflection in semicrystalline polyethylene: a molecular-level investigation. Phys. Rev. Mater. 1, 043606 (2017). https://doi.org/10.1103/PhysRevMaterials.1.043606

    Article  Google Scholar 

  11. 11.

    M.A.N. Dewapriya, R.E. Miller, Superior dynamic penetration resistance of nanoscale multilayer polymer/metal films. J. Appl. Mech. 87, 121009 (2020). https://doi.org/10.1115/1.4048319

    CAS  Article  Google Scholar 

  12. 12.

    M.A.N. Dewapriya, R.E. Miller, Molecular dynamics simulations of shock propagation and spallation in amorphous polymers. J. Appl. Mech. 88, 101005 (2021). https://doi.org/10.1115/1.4051238

    Article  Google Scholar 

  13. 13.

    J. Wackerle, Shock-wave compression of quartz. J. Appl. Phys. 33, 922–937 (1962). https://doi.org/10.1063/1.1777192

    CAS  Article  Google Scholar 

  14. 14.

    T. Antoun, L. Seaman, D.R. Curran, G.I. Kanel, S.V. Razorenov, A.V. Utkin, Book of the Spall Fracture (Springer, New York, 2003)

    Google Scholar 

  15. 15.

    S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 117, 1–19 (1995). https://doi.org/10.1006/jcph.1995.1039

    CAS  Article  Google Scholar 

  16. 16.

    A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Model. Simul. Mater. Sci. Eng. 18, 015012 (2010). https://doi.org/10.1088/0965-0393/18/1/015012

    Article  Google Scholar 

  17. 17.

    H. Sun, S.J. Mumby, J.R. Maple, A.T. Hagler, An ab Initio CFF93 all-atom force field for polycarbonates. J. Am. Chem. Soc. 116, 2978–2987 (1994). https://doi.org/10.1021/ja00086a030

    CAS  Article  Google Scholar 

  18. 18.

    H. Heinz, T.-J. Lin, R. Kishore-Mishra, F.S. Emami, Thermodynamically consistent force fields for the assembly of inorganic, organic, and biological nanostructures: the interface force field. Langmuir 29, 1754–1765 (2013). https://doi.org/10.1021/la3038846

    CAS  Article  Google Scholar 

  19. 19.

    P.J. In’t Veld, Enhanced Monte Carlo (2019), http://montecarlo.sourceforge.net/emc.

  20. 20.

    W. Mock, S. Bartyczak, G. Lee, J. Fedderly, K. Jordan, M. Elert, M.D. Furnish, W.W. Anderson, W.G. Proud, W.T. Butler, Dynamic Properties of Polyurea 1000 (Nashville, Tennessee, 2009), pp. 1241–1244. https://doi.org/10.1063/1.3295029.

  21. 21.

    A.H. Pacheco, R.L. Gustavsen, T.D. Aslam, B.D. Bartram, Hugoniot based equation of state for solid polyurea and polyurea aerogels, in AIP Conf. Proc. 1793 120029 (Tampa Bay, FL, 2017), p. 120029. https://doi.org/10.1063/1.4971711.

  22. 22.

    E.J. Reed, L.E. Fried, J.D. Joannopoulos, A method for tractable dynamical studies of single and double shock compression. Phys. Rev. Lett. 90, 235503 (2003). https://doi.org/10.1103/PhysRevLett.90.235503

    CAS  Article  Google Scholar 

  23. 23.

    A.P. Thompson, S.J. Plimpton, W. Mattson, General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions. J. Chem. Phys. 131, 154107 (2009). https://doi.org/10.1063/1.3245303

    CAS  Article  Google Scholar 

  24. 24.

    W. Li, E.N. Hahn, X. Yao, T.C. Germann, B. Feng, X. Zhang, On the grain size dependence of shock responses in nanocrystalline sic ceramics at high strain rates. Acta Mater. 200, 632–651 (2020). https://doi.org/10.1016/j.actamat.2020.09.044

    CAS  Article  Google Scholar 

  25. 25.

    J. Wang, F. Wu, P. Wang, A. He, H. Wu, Double-shock-induced spall and recompression processes in copper. J. Appl. Phys. 127, 135903 (2020). https://doi.org/10.1063/1.5144567

    CAS  Article  Google Scholar 

  26. 26.

    L. He, F. Wang, X. Zeng, X. Yang, Z. Qi, Atomic insights into shock-induced spallation of single-crystal aluminum through molecular dynamics modeling. Mech. Mater. 143, 103343 (2020). https://doi.org/10.1016/j.mechmat.2020.103343

    Article  Google Scholar 

  27. 27.

    J. Rottler, M.O. Robbins, Yield conditions for deformation of amorphous polymer glasses. Phys. Rev. E. 64, 051801 (2001). https://doi.org/10.1103/PhysRevE.64.051801

    CAS  Article  Google Scholar 

  28. 28.

    J.-L. Shao, P. Wang, A.-M. He, R. Zhang, C.-S. Qin, Spall strength of aluminium single crystals under high strain rates: molecular dynamics study. J. Appl. Phys. 114, 173501 (2013). https://doi.org/10.1063/1.4828709

    CAS  Article  Google Scholar 

  29. 29.

    B.J. Demaske, V.V. Zhakhovsky, N.A. Inogamov, I.I. Oleynik, Ablation and spallation of gold films irradiated by ultrashort laser pulses. Phys. Rev. B. 82, 064113 (2010). https://doi.org/10.1103/PhysRevB.82.064113

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors thank the NSERC Discovery Grant program for supporting this research under the Grant Number RGPIN-2019-06313. Computing resources for the simulations were provided by Compute Ontario and Compute Canada.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. A. N. Dewapriya.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dewapriya, M.A.N., Miller, R.E. Molecular-level investigation on the spallation of polyurea. MRS Communications 11, 532–538 (2021). https://doi.org/10.1557/s43579-021-00073-5

Download citation

Keywords

  • Computation
  • Extreme environment
  • Fracture
  • Modeling
  • Molecular
  • Polymer