Skip to main content

Molecular-level investigation on the spallation of polyurea


We used molecular dynamics (MD) simulations to investigate the nanoscale mechanism associated with the spallation of polyurea, which allowed us to test some assumptions commonly made in the interpretation of similar experiments on the macroscale. The spall strength was computed by following two methods: (i) The indirect method (from the free surface velocity history—commonly used in experiments) (ii) A direct method (from the atomic stresses in the spall region—accessible only in MD). Our results show that the spall strength computed from the direct method is consistently higher than that obtained from the indirect method.

Graphic abstract

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request. The MD model used in the study is available at


  1. 1.

    Y. Sun, Y.-C.M. Wu, D. Veysset, S.E. Kooi, W. Hu, T.M. Swager, K.A. Nelson, A.J. Hsieh, Molecular dependencies of dynamic stiffening and strengthening through high strain rate microparticle impact of polyurethane and polyurea elastomers. Appl. Phys. Lett. 115, 093701 (2019).

    CAS  Article  Google Scholar 

  2. 2.

    Y. Sun, S.E. Kooi, K.A. Nelson, A.J. Hsieh, D. Veysset, Impact-induced glass-to-rubber transition of polyurea under high-velocity temperature-controlled microparticle impact. Appl. Phys. Lett. 117, 021905 (2020).

    CAS  Article  Google Scholar 

  3. 3.

    S.A. Tekalur, A. Shukla, K. Shivakumar, Blast resistance of polyurea based layered composite materials. Compos. Struct. 84, 271–281 (2008).

    Article  Google Scholar 

  4. 4.

    L. Xue, W. Mock, T. Belytschko, Penetration of DH-36 steel plates with and without polyurea coating. Mech. Mater. 42, 981–1003 (2010).

    Article  Google Scholar 

  5. 5.

    D. Veysset, J.-H. Lee, M. Hassani, S.E. Kooi, E.L. Thomas, K.A. Nelson, High-velocity micro-projectile impact testing. Appl. Phys. Rev. 8, 011319 (2021).

    CAS  Article  Google Scholar 

  6. 6.

    M.A.N. Dewapriya, R.E. Miller, Molecular dynamics study of the penetration resistance of multilayer polymer/ceramic nanocomposites under supersonic projectile impacts. Extreme Mech. Lett. 44, 101238 (2021).

    Article  Google Scholar 

  7. 7.

    M.A.N. Dewapriya, R.E. Miller, Energy absorption mechanisms of nanoscopic multilayer structures under ballistic impact loading. Comput. Mater. Sci. 195, 110504 (2021).

    CAS  Article  Google Scholar 

  8. 8.

    M. Manav, M. Ortiz, Molecular dynamics study of the shock response of polyurea. Polymer 212, 123109 (2021).

    CAS  Article  Google Scholar 

  9. 9.

    T.C. O’Connor, R.M. Elder, Y.R. Sliozberg, T.W. Sirk, J.W. Andzelm, M.O. Robbins, Molecular origins of anisotropic shock propagation in crystalline and amorphous polyethylene. Phys. Rev. Mater. 2, 035601 (2018).

    Article  Google Scholar 

  10. 10.

    R.M. Elder, T.C. O’Connor, T.L. Chantawansri, Y.R. Sliozberg, T.W. Sirk, I.-C. Yeh, M.O. Robbins, J.W. Andzelm, Shock-wave propagation and reflection in semicrystalline polyethylene: a molecular-level investigation. Phys. Rev. Mater. 1, 043606 (2017).

    Article  Google Scholar 

  11. 11.

    M.A.N. Dewapriya, R.E. Miller, Superior dynamic penetration resistance of nanoscale multilayer polymer/metal films. J. Appl. Mech. 87, 121009 (2020).

    CAS  Article  Google Scholar 

  12. 12.

    M.A.N. Dewapriya, R.E. Miller, Molecular dynamics simulations of shock propagation and spallation in amorphous polymers. J. Appl. Mech. 88, 101005 (2021).

    Article  Google Scholar 

  13. 13.

    J. Wackerle, Shock-wave compression of quartz. J. Appl. Phys. 33, 922–937 (1962).

    CAS  Article  Google Scholar 

  14. 14.

    T. Antoun, L. Seaman, D.R. Curran, G.I. Kanel, S.V. Razorenov, A.V. Utkin, Book of the Spall Fracture (Springer, New York, 2003)

    Google Scholar 

  15. 15.

    S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 117, 1–19 (1995).

    CAS  Article  Google Scholar 

  16. 16.

    A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Model. Simul. Mater. Sci. Eng. 18, 015012 (2010).

    Article  Google Scholar 

  17. 17.

    H. Sun, S.J. Mumby, J.R. Maple, A.T. Hagler, An ab Initio CFF93 all-atom force field for polycarbonates. J. Am. Chem. Soc. 116, 2978–2987 (1994).

    CAS  Article  Google Scholar 

  18. 18.

    H. Heinz, T.-J. Lin, R. Kishore-Mishra, F.S. Emami, Thermodynamically consistent force fields for the assembly of inorganic, organic, and biological nanostructures: the interface force field. Langmuir 29, 1754–1765 (2013).

    CAS  Article  Google Scholar 

  19. 19.

    P.J. In’t Veld, Enhanced Monte Carlo (2019),

  20. 20.

    W. Mock, S. Bartyczak, G. Lee, J. Fedderly, K. Jordan, M. Elert, M.D. Furnish, W.W. Anderson, W.G. Proud, W.T. Butler, Dynamic Properties of Polyurea 1000 (Nashville, Tennessee, 2009), pp. 1241–1244.

  21. 21.

    A.H. Pacheco, R.L. Gustavsen, T.D. Aslam, B.D. Bartram, Hugoniot based equation of state for solid polyurea and polyurea aerogels, in AIP Conf. Proc. 1793 120029 (Tampa Bay, FL, 2017), p. 120029.

  22. 22.

    E.J. Reed, L.E. Fried, J.D. Joannopoulos, A method for tractable dynamical studies of single and double shock compression. Phys. Rev. Lett. 90, 235503 (2003).

    CAS  Article  Google Scholar 

  23. 23.

    A.P. Thompson, S.J. Plimpton, W. Mattson, General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions. J. Chem. Phys. 131, 154107 (2009).

    CAS  Article  Google Scholar 

  24. 24.

    W. Li, E.N. Hahn, X. Yao, T.C. Germann, B. Feng, X. Zhang, On the grain size dependence of shock responses in nanocrystalline sic ceramics at high strain rates. Acta Mater. 200, 632–651 (2020).

    CAS  Article  Google Scholar 

  25. 25.

    J. Wang, F. Wu, P. Wang, A. He, H. Wu, Double-shock-induced spall and recompression processes in copper. J. Appl. Phys. 127, 135903 (2020).

    CAS  Article  Google Scholar 

  26. 26.

    L. He, F. Wang, X. Zeng, X. Yang, Z. Qi, Atomic insights into shock-induced spallation of single-crystal aluminum through molecular dynamics modeling. Mech. Mater. 143, 103343 (2020).

    Article  Google Scholar 

  27. 27.

    J. Rottler, M.O. Robbins, Yield conditions for deformation of amorphous polymer glasses. Phys. Rev. E. 64, 051801 (2001).

    CAS  Article  Google Scholar 

  28. 28.

    J.-L. Shao, P. Wang, A.-M. He, R. Zhang, C.-S. Qin, Spall strength of aluminium single crystals under high strain rates: molecular dynamics study. J. Appl. Phys. 114, 173501 (2013).

    CAS  Article  Google Scholar 

  29. 29.

    B.J. Demaske, V.V. Zhakhovsky, N.A. Inogamov, I.I. Oleynik, Ablation and spallation of gold films irradiated by ultrashort laser pulses. Phys. Rev. B. 82, 064113 (2010).

    CAS  Article  Google Scholar 

Download references


The authors thank the NSERC Discovery Grant program for supporting this research under the Grant Number RGPIN-2019-06313. Computing resources for the simulations were provided by Compute Ontario and Compute Canada.

Author information



Corresponding author

Correspondence to M. A. N. Dewapriya.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dewapriya, M.A.N., Miller, R.E. Molecular-level investigation on the spallation of polyurea. MRS Communications 11, 532–538 (2021).

Download citation


  • Computation
  • Extreme environment
  • Fracture
  • Modeling
  • Molecular
  • Polymer