Skip to main content

Single-step amphoteric surface modification through plasma polymerization: Antifouling coating for titanium substrate

Abstract

In order to improve bacterial antifouling property, titanium (Ti) surfaces were functionalized through the plasma polymerization (PP) technique with diethyl allyl phosphate (DAP) as amphoteric precursor. Antifouling properties of the surfaces were evaluated in vitro by Escherichia coli (ATCC® 25922™) and Staphylococcus aureus (ATCC® 25923™) strain, and results showed that 75.00% and 81.25% bacterial reduction achieved on functionalized surfaces, respectively. In vitro cell culture studies were carried out with BJ normal human skin fibroblast (ATCC® CRL-2522™) cell line. These findings revealed that amphoteric plasma polymer prepared from DAP offers promising solution for preventing Biofilm formation on Ti.

Graphic abstract

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. 1.

    S. Liao, C. Chang, C. Chen, C. Lee, W. Lin, Functionalization of pure titanium MAO coatings by surface modifications for biomedical applications. Surf. Coat. Technol. (2020). https://doi.org/10.1016/j.surfcoat.2020.125812

    Article  Google Scholar 

  2. 2.

    Z.M. Ebimobowei, A. Emmanuel, A.J. Adegbindin, Mechanical strengthening and microstructural evolutions of Ni-B based hardfacing alloys influenced by titanium additions. Adv. Mater. 8, 41–47 (2019). https://doi.org/10.11648/j.am.20190802.11

    CAS  Article  Google Scholar 

  3. 3.

    S. Noumbissi, A. Scarano, S. Gupta, A literature review study on atomic ions dissolution of titanium and its alloys in implant dentistry. Materials. 12, 368 (2019). https://doi.org/10.3390/ma12030368

    CAS  Article  Google Scholar 

  4. 4.

    D.J. Stickler, Bacterial biofilms in patients with indwelling urinary catheters. Nat. Clin. Pract. Urol. 5, 598–608 (2008)

    CAS  Article  Google Scholar 

  5. 5.

    S. Noimark, C.W. Dunnill, M. Wilson, I.P. Parkin, The role of surfaces in catheter-associated infections. Chem. Soc. Rev. 38, 3435–3448 (2009)

    CAS  Article  Google Scholar 

  6. 6.

    H. Wang, H. Wang, Z. Wang, L. Tang, G. Zeng, P. Xu, M. Chen, J. Tang, Covalent organic framework photocatalysts: structures and applications. Chem. Soc. Rev. 49, 4135–4165 (2020)

    CAS  Article  Google Scholar 

  7. 7.

    C. Wu, Y. Zhou, M. Xu, P. Han, L. Chen, J. Chang, Y. Xiao, Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity. Biomaterials 34, 422–433 (2013)

    CAS  Article  Google Scholar 

  8. 8.

    M. Lucke, G. Schmidmaier, S. Sadoni, B. Wildemann, R. Schiller, N.P. Haas, M. Raschke, Gentamicin coating of metallic implants reduces implant-related osteomyelitis in rats. Bone 32, 521–531 (2003)

    CAS  Article  Google Scholar 

  9. 9.

    K.C. Popat, L. Leoni, C.A. Grimes, T.A. Desai, Influence of engineered titania nanotubular surfaces on bone cells. Biomaterials 28, 3188–3197 (2007)

    CAS  Article  Google Scholar 

  10. 10.

    K.C. Popat, M. Eltgroth, T.J. LaTempa, C.A. Grimes, T.A. Desai, Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes. Biomaterials 28, 4880–4888 (2007)

    CAS  Article  Google Scholar 

  11. 11.

    S. Radin, P. Ducheyne, Controlled release of vancomycin from thin sol–gel films on titanium alloy fracture plate material. Biomaterials 28, 1721–1729 (2007)

    CAS  Article  Google Scholar 

  12. 12.

    A.A. Campbell, L. Song, X.S. Li, B.J. Nelson, C. Bottoni, D.E. Brooks, E.S. DeJong, Development, characterization, and anti-microbial efficacy of hydroxyapatite-chlorhexidine coatings produced by surface-induced mineralization. J. Biomed. Mater. Res. 53, 400–407 (2000)

    CAS  Article  Google Scholar 

  13. 13.

    A. Nanci, J.D. Wuest, L. Peru, P. Brunet, V. Sharma, S. Zalzal, M.D. McKee, Chemical modification of titanium surfaces for covalent attachment of biological molecules. J. Biomed. Mater. Res. 40, 324–335 (1998)

    CAS  Article  Google Scholar 

  14. 14.

    H.F. Özgüzar, G.K. Can, G. Kabay, M. Mutlu, Quartz tuning fork as a mass sensitive biosensor platform with a bi-layer film modification via plasma polymerization. MRS Commun. 9, 710–718 (2019)

    Article  Google Scholar 

  15. 15.

    A.E. Meydan, H.F. Özgüzar, J.S. Göçmen, M. Mutlu, Controlled Drug Release Performance of Plasma Modified Slab and Mat Matrices: A Model Study with “Ampicillin.” Int. J. Pharm. 587, 119586 (2020)

    CAS  Article  Google Scholar 

  16. 16.

    G.K. Can, H.F. Özgüzar, G. Kabay, P. Kömürcü, M. Mutlu, Simultaneous insulation and modification of quartz tuning fork surface by single-step plasma polymerization technique with amine-rich precursors. MRS Commun. 8, 541–549 (2018)

    Article  Google Scholar 

  17. 17.

    E. Akdogan, M. Demirbilek, Y. Sen, M.A. Onur, O.K. Azap, E. Sonmez, M. Mutlu, In vitro and in vivo bacterial antifouling properties of phosphite plasma-treated silicone. Surf. Innovat. 7, 122–132 (2019)

    Article  Google Scholar 

  18. 18.

    C.A. Streuli, Determination of basicity of substituted phosphines by nonaqueous titrimetry. Anal. Chem. 32, 985–987 (1960)

    CAS  Article  Google Scholar 

  19. 19.

    G. Kaleli-Can, H.F. Özgüzar, S. Kahriman, M. Türkal, J.S. Göçmen, E. Yurtçu, M. Mutlu, Improvement in antimicrobial properties of titanium by diethyl phosphite plasma-based surface modification. Mater. Today Commun. 25, 101565 (2020)

    CAS  Article  Google Scholar 

  20. 20.

    E. Akdoğan, M. Mutlu, Generation of Amphoteric surfaces via glow-discharge technique with single precursor and the behavior of bovine serum albumin at the surface. Colloids Surf. B 89, 289–294 (2012)

    Article  Google Scholar 

  21. 21.

    G. Kaleli-Can, E. Hortaç-İştar, H.F. Özgüzar, M. Mutlu, H.C. Mirza, A. Başustaoğlu, J.S. Göçmen, Prevention of Candida biofilm formation over polystyrene by plasma polymerization technique. MRS Commun. 10, 667–673 (2020)

    CAS  Article  Google Scholar 

  22. 22.

    M. Bryjak, I. Gancarz, G. Poźniak, Surface evaluation of plasma-modified polysulfone (Udel P-1700) films. Langmuir 15, 6400–6404 (1999)

    CAS  Article  Google Scholar 

  23. 23.

    JIS, Z. 2801: 2000 Antimicrobial Products: Test for Antimicrobial Activity and Efficacy. Japanese Standards Association, Tokyo

  24. 24.

    Y. Wu, J.P. Zitelli, K.S. TenHuisen, X. Yu, M.R. Libera, Differential response of Staphylococci and Osteoblasts to varying titanium surface roughness. Biomaterials 32, 951–960 (2011)

    Article  Google Scholar 

  25. 25.

    J. Yu, N. Xu, Y. Xi, M. Xue, W. Wang, X. Huang, X. Ye, Adhesion behavior of Escherichia coli on plasma-sprayed Zn and Ag Co-incorporated calcium silicate coatings with varying surface roughness. J. Therm. Spray Technol. 27, 1428–1435 (2018)

    CAS  Article  Google Scholar 

  26. 26.

    S. Guo, D. Jańczewski, X. Zhu et al., Surface charge control for zwitterionic polymer brushes: tailoring surface properties to antifouling applications. J. Colloid Interface Sci. 452, 43–53 (2015)

    CAS  Article  Google Scholar 

  27. 27.

    R. Yang, P. Moni, K.K. Gleason, Ultrathin zwitterionic coatings for roughness independent underwater superoleophobicity and gravity driven oil water separation. Adv. Mater. Interfaces 2, 1400489 (2015)

    Article  Google Scholar 

  28. 28.

    M.W. Sabaa, N.A. Mohamed, R.R. Mohamed, N.M. Khalil, S.M. Abd El Latif, Synthesis, characterization and antimicrobial activity of poly (N-vinyl imidazole) grafted carboxymethyl chitosan. Carbohyd. Polym. 79, 998–1005 (2010)

    CAS  Article  Google Scholar 

  29. 29.

    H. Tu, G. Wu, Y. Yi, M. Huang, R. Liu, X. Shi, H. Deng, Layer-by-layer immobilization of amphoteric carboxymethyl chitosan onto biocompatible silk fibroin nanofibrous mats. Carbohyd. Polym. 210, 9–16 (2019)

    CAS  Article  Google Scholar 

  30. 30.

    J. Gallo, M. Holinka, C.S. Moucha, Antibacterial surface treatment for orthopaedic implants. Int. J. Mol. Sci. 15, 13849–13880 (2014). https://doi.org/10.3390/ijms150813849

    CAS  Article  Google Scholar 

  31. 31.

    R. Kugler, O. Bouloussa, F. Rondelez, Evidence of a charge-density threshold for optimum efficiency of biocidal cationic surfaces. Microbiol. Sgm. 151, 1341–1348 (2005). https://doi.org/10.1099/mic.0.27526-0

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

HFÖ: Conceptualization, Methodology, Investigation, Writing—original draft, Visualization, Project administration. AEM: Investigation, Writing—original draft. JSG: Resources, Writing—review & editing, Supervision. MM: Resources, Writing—review & editing, Supervision, Project administration.

Corresponding author

Correspondence to Mehmet Mutlu.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2166 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Özgüzar, H.F., Meydan, A.E., Göçmen, J.S. et al. Single-step amphoteric surface modification through plasma polymerization: Antifouling coating for titanium substrate. MRS Communications 11, 523–531 (2021). https://doi.org/10.1557/s43579-021-00071-7

Download citation