Skip to main content

Study of low temperature solution-processed amorphous KNN thin films using PFM

Abstract

This work focuses on the synthesis and deposition process for the fabrication of uniform amorphous thin (\(\sim \) 70 nm) unannealed films of potassium sodium niobate (KNN). The composition of deposited and dried (at \({90}^{\circ }{\text{C}}\)) films were confirmed using energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy (XPS). For unity K:Na ratios, piezo response force microscopy revealed large electromechanical response potentially due to tip-induced poling in pulsed DC measurements. Low thermal footprint of the process is likely to significantly lower the cost of devices requiring high performance piezoelectric materials and to maintain the final stoichiometry of the film.

Graphic abstract

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3

References

  1. 1.

    S.R. Burns, M.R. Dolgos, New J. Chem. 45(17), 7408 (2021). https://doi.org/10.1039/D1NJ01092A

    CAS  Article  Google Scholar 

  2. 2.

    M. Zheng, Y. Hou, L. Chao, M. Zhu, J. Mater. Sci. 29(11), 9582 (2018). https://doi.org/10.1007/s10854-018-8993-4

    CAS  Article  Google Scholar 

  3. 3.

    L. Tan, X. Wang, W. Zhu, A. Li, Y. Wang, J. Alloys Compd. 874, 159770 (2021). https://doi.org/10.1016/j.jallcom.2021.159770

    CAS  Article  Google Scholar 

  4. 4.

    A. Madani, R.B. Mrad, A.N. Sinclair, Microsyst. Technol. 23(6), 1943 (2017). https://doi.org/10.1007/s00542-016-3106-x

    CAS  Article  Google Scholar 

  5. 5.

    H. Mercier, B. Malič, H. Uršič, J. Hreščak, F. Levassort, D. Kuscer, J. Eur. Ceram. Soc. 37(16), 5305 (2017). https://doi.org/10.1016/j.jeurceramsoc.2017.06.030

    CAS  Article  Google Scholar 

  6. 6.

    L. Jiang, P. Yang, Y. Fan, S. Zeng, Z. Wang, Z. Pan, Y. He, J. Xiong, X. Zhang, Y. Hu, H. Gu, X. Wang, J. Wang, Nano Energy 86, 106072 (2021). https://doi.org/10.1016/j.nanoen.2021.106072

    CAS  Article  Google Scholar 

  7. 7.

    N. Li, W. Li, L. Wang, W. Fei, Integr. Ferroelectr. 213(1), 137 (2021). https://doi.org/10.1080/10584587.2020.1859831

    CAS  Article  Google Scholar 

  8. 8.

    R.S. Deol, M. Mehra, B. Mitra, M. Singh, MRS Adv. 3(5), 269 (2018). https://doi.org/10.1557/adv.2018.78

    CAS  Article  Google Scholar 

  9. 9.

    A. Khan, Z. Abas, H.S. Kim, I.K. Oh, Smart Mater. Struct. 25(5), 053002 (2016). https://doi.org/10.1088/0964-1726/25/5/053002

    CAS  Article  Google Scholar 

  10. 10.

    A.B. Milhim, R. Ben-Mrad, J. Microelectromech. Syst. 25(2), 320 (2016). https://doi.org/10.1109/JMEMS.2016.2515058

    CAS  Article  Google Scholar 

  11. 11.

    N. Zhang, T. Zheng, J. Wu, ACS Omega 5(7), 3099 (2020). https://doi.org/10.1021/acsomega.9b03658

    CAS  Article  Google Scholar 

  12. 12.

    T. Lusiola, N. Chelwani, F. Bortolani, Q. Zhang, R.A. Dorey, Ferroelectrics 422(1), 50 (2011). https://doi.org/10.1080/00150193.2011.594724

    CAS  Article  Google Scholar 

  13. 13.

    M. Rotan, M. Zhuk, J. Glaum, J. Eur. Ceram. Soc. 40(15), 5402 (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.06.058

    CAS  Article  Google Scholar 

  14. 14.

    X. Lv, J. Zhu, D. Xiao, X.X. Zhang, J. Wu, Chem. Soc. Rev. 49(3), 671 (2020). https://doi.org/10.1039/C9CS00432G

    CAS  Article  Google Scholar 

  15. 15.

    A. Kupec, B. Malic, J. Tellier, E. Tchernychova, S. Glinsek, M. Kosec, J. Am. Ceram. Soc. 95(2), 515 (2012). https://doi.org/10.1111/j.1551-2916.2011.04892.x

    CAS  Article  Google Scholar 

  16. 16.

    D. Seol, B. Kim, Y. Kim, Curr. Appl. Phys. 17(5), 661 (2017). https://doi.org/10.1016/j.cap.2016.12.012

    Article  Google Scholar 

  17. 17.

    C. Harnagea, A. Pignolet, M. Alexe, D. Hesse, IEEE transactions on ultrasonics, ferroelectrics, and frequency. Control 53(12), 2309 (2006). https://doi.org/10.1109/TUFFC.2006.179

    Article  Google Scholar 

  18. 18.

    E. Soergel, J. Phys. D 44(46), 464003 (2011). https://doi.org/10.1088/0022-3727/44/46/464003

    CAS  Article  Google Scholar 

  19. 19.

    S. Kim, D. Seol, X. Lu, M. Alexe, Y. Kim, Sci. Rep. 7, 41657 (2017). https://doi.org/10.1038/srep41657

    CAS  Article  Google Scholar 

  20. 20.

    Y. Kim, A. Kumar, A. Tselev, I.I. Kravchenko, H. Han, I. Vrejoiu, W. Lee, D. Hesse, M. Alexe, S.V. Kalinin, S. Jesse, ACS Nano 5(11), 9104 (2011). https://doi.org/10.1021/nn203342v

    CAS  Article  Google Scholar 

  21. 21.

    P. Yongsiri, K. Pengpat, Integr. Ferroelectr. 141(1), 154 (2013). https://doi.org/10.1080/10584587.2013.787778

    CAS  Article  Google Scholar 

  22. 22.

    G.H. Haertling, J. Am. Ceram. Soc. 82(4), 797 (1999). https://doi.org/10.1111/j.1151-2916.1999.tb01840.x

    CAS  Article  Google Scholar 

  23. 23.

    Y. Nakashima, W. Sakamoto, H. Maiwa, T. Shimura, T. Yogo, Jpn. J Appl. Phys. 46(4L), L311 (2007)

    CAS  Article  Google Scholar 

  24. 24.

    J.F. Li, K. Wang, F.Y. Zhu, L.Q. Cheng, F.Z. Yao, J. Am. Ceram. Soc. 96(12), 3677 (2013). https://doi.org/10.1111/jace.12715

    CAS  Article  Google Scholar 

  25. 25.

    C.W. Ahn, E.D. Jeong, S.Y. Lee, H.J. Lee, S.H. Kang, I.W. Kim, Appl. Phys. Lett. 93(21), 212905 (2008). https://doi.org/10.1063/1.3037214

    CAS  Article  Google Scholar 

  26. 26.

    E. Strelcov, Y. Kim, J.C. Yang, Y.H. Chu, P. Yu, X. Lu, S. Jesse, S.V. Kalinin, Appl. Phys. Lett. 101(19), 192902 (2012). https://doi.org/10.1063/1.4764939

    CAS  Article  Google Scholar 

  27. 27.

    Y. Ivry, N. Wang, D. Chu, C. Durkan, Phys. Rev. B 81(17), 174118 (2010). https://doi.org/10.1103/PhysRevB.81.174118

    CAS  Article  Google Scholar 

  28. 28.

    N. Balke, P. Maksymovych, S. Jesse, A. Herklotz, A. Tselev, C.B. Eom, I.I. Kravchenko, P. Yu, S.V. Kalinin, ACS Nano 9(6), 6484 (2015). https://doi.org/10.1021/acsnano.5b02227

    CAS  Article  Google Scholar 

  29. 29.

    J.H. Wang, Smart Mater. Struct. 26(10), 105045 (2017). https://doi.org/10.1088/1361-665X/aa89ad

    Article  Google Scholar 

  30. 30.

    H.W. Choi, T. Zhou, M. Singh, G.E. Jabbour, Nanoscale 7(8), 3338 (2015). https://doi.org/10.1039/C4NR03915G

    CAS  Article  Google Scholar 

Download references

Acknowledgments

RSD and NB acknowledge support from Ministry of Human Resources & Development (MHRD) for their Ph.D. fellowships. SS, BM and MS acknowledge support from grant 9(2)/2012-MDD from the Ministry of Electronics and Information Technology. BM and MS acknowledge support under the Young Faculty Research Fellowship (YFRF) from Digital India Corporation, and a seed grant from the Faculty Interdisciplinary Research Program (FIRP) of IIT Delhi. The authors acknowledge access to the Central Research Facility and Nanoscale Research Facility of IIT Delhi. Authors are thankful to Materials Research Centre, MNIT Jaipur for XPS characterization of our samples. Authors acknowledge useful discussions with Dr. Meenal Mehra. Data will be available from authors upon request.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Madhusudan Singh.

Ethics declarations

Conflict of interest

RSD, SS, BM, and MS declare competing interest in the form of a related Indian patent application (201811044238).

Supplementary Information

Below is the link to the Supplementary Information.

Supplementary Information 1 (PDF 766 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Deol, R.S., Saha, S., Batra, N. et al. Study of low temperature solution-processed amorphous KNN thin films using PFM. MRS Communications (2021). https://doi.org/10.1557/s43579-021-00068-2

Download citation

Keywords

  • Amorphous
  • Solution deposition
  • Ceramic
  • Piezoresponse
  • Thin film
  • Atomic probe microscopy