Skip to main content

High voltage normally-off extend p-GaN gate with thin AlGaN barrier layer and AlGaN buffer transistor

Abstract

This study investigated a normally-off p-GaN/AlGaN/GaN high electron mobility transistor with the extended p-GaN. The optimized recess depth in the AlGaN barrier under the extended region of p-GaN provides improved device characteristics. The influences of recess depth in the AlGaN barrier and the extended length of the p-GaN extension on the threshold voltage (VTH), the maximum drain current (ID,MAX), and breakdown voltage were simulated and studied. The proposed transistor with a 1-μm p-GaN extension and 2-nm recess depth in AlGaN barrier shows improvement on VTH and ID,MAX without degrading the breakdown voltage compared with the device without p-GaN extension.

Graphic abstract

The optimized recess depth (TR) in the AlGaN barrier under the extended region of p-GaN provides improved device characteristics.

Improvement on VTH and ID,MAX without degrading the breakdown voltage.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. 1.

    U.K. Mishira, P. Parikh, Y.-F. Wu, Proc. IEEE 90, 1022 (2002)

    Article  Google Scholar 

  2. 2.

    T. Kikkawa, Jpn. J. Appl. Phys. 44, 4896 (2005)

    CAS  Article  Google Scholar 

  3. 3.

    O. Hilt, A. Knauer, F. Brunner, E. Bahat-Treidel, J. Würfl, 22nd Int. Sym. Power Semi. Dev. 9–3 (2010)

  4. 4.

    E.A. Jones, F. Wang, D. Costinett, IEEE J. Emerg. Sel. Top. Power Electron. 4, 707 (2016)

    Article  Google Scholar 

  5. 5.

    W. Saito, Y. Takada, M. Kuraguchi, K. Tsuda, I. Omura, IEEE Trans. Electron Dev. 53, 356 (2006)

    CAS  Article  Google Scholar 

  6. 6.

    Y. Cai, Y. Zhou, K.M. Lau, K.J. Chen, IEEE Trans. Electron Dev. 53, 2207 (2006)

    CAS  Article  Google Scholar 

  7. 7.

    G. Greco, F. Giannazzo, A. Frazzetto, V. Raineri, F. Roccaforte, Nanoscale Res. Lett. 6, 132 (2011)

    Article  Google Scholar 

  8. 8.

    K.J. Chen, C. Zhou, Phys. Status Solidi A 208, 434 (2011)

    CAS  Article  Google Scholar 

  9. 9.

    G. Greco, F. Iucolano, F. Roccaforte, Mater. Sci. Secmicond. Process. (2017). https://doi.org/10.1016/j.mssp.2017.09.027

    Article  Google Scholar 

  10. 10.

    M. Tajima, J. Kotani, T. Hashizume, Jpn. J. Appl. Phys. 48, 020203 (2009)

    Article  Google Scholar 

  11. 11.

    N.H. Van, J.H. Lee, J.I. Sohn, S.N. Cha, D. Whang, J.M. Kim, D.J. Kang, Nanotechnology 25, 205201 (2014)

    Article  Google Scholar 

  12. 12.

    X. Hu, G. Simin, J. Yang, M.A. Khan, R. Gaska, M.S. Shur, Electron. Lett. 36, 753 (2000)

    CAS  Article  Google Scholar 

  13. 13.

    Y. Uemoto, M. Hikita, H. Ueno, H. Matsuo, H. Ishida, M. Yanagihara, T. Ueda, T. Tanaka, D. Ueda, IEEE Trans. Electron Dev. 54, 3393 (2007)

    CAS  Article  Google Scholar 

  14. 14.

    Y.H. Wang, Y.C. Liang, G.S. Samudra, H. Huang, B.J. Huang, S.H. Huang, T.F. Chang, C.F. Huang, W.H. Kuo, G.Q. Lo, IEEE Electron Dev. Lett. 36, 381 (2015)

    Article  Google Scholar 

  15. 15.

    R. Brown, D. Macfarlane, A. Al-Khalidi, G. Ternent, H. Zhou, I. Thayne, E. Wasige, IEEE Electron Dev. Lett. 35, 906 (2014)

    CAS  Article  Google Scholar 

  16. 16.

    J.P. Ibbetson, P.T. Fini, K.D. Ness, S.P. DenBaars, J.S. Speck, U.K. Mishra, Appl. Phys. Lett. 77, 250 (2000)

    CAS  Article  Google Scholar 

  17. 17.

    O. Ambacher, B. Foutz, J. Smart, J.R. Shealy, N.G. Weimann, K. Chu, M. Murphy, A.J. Sierakowski, W.J. Schaff, L.F. Eastman, R. Dimitrov, A. Mitchell, M. Stutzmann, J. Appl. Phys. 87, 334 (2000)

    CAS  Article  Google Scholar 

  18. 18.

    H. Jiang, R. Zhu, Q. Lyu, C.W. Tang, K.M. Lau, Semicond. Sci. Technol. 36, 034001 (2021)

    CAS  Article  Google Scholar 

  19. 19.

    W. Jiang, H. Tang, J.A. Bardwell, Semicond. Sci. Technol. 36, 05LT01 (2021)

    CAS  Article  Google Scholar 

  20. 20.

    C. Wang, M. Hua, J. Chen, S. Yang, Z. Zheng, J. Wei, L. Zhang, K.J. Chen, IEEE Electron Dev. Lett. 41, 545 (2020)

    Article  Google Scholar 

  21. 21.

    D. Niu, Q. Wang, W. Li, C. Chen, J. Xu, L. Jiang, C. Feng, H. Xiao, Q. Wang, X. Xu, X. Wang, Jpn. J. Appl. Phys. 59, 111001 (2020)

    CAS  Article  Google Scholar 

  22. 22.

    Y. Huang, J. Li, W. Chen, J. Wang, J. Xue, Q. Cai, D. Chen, R. Zhang, Opt. Quantum Electron. 53, 139 (2021)

    CAS  Article  Google Scholar 

  23. 23.

    SILVACO GANFET Application Examples, https://silvaco.com/examples/tcad/section8/index.html. Accessed 01 June 2021

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yue-Ming Hsin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sai, S.K., Hsin, YM. High voltage normally-off extend p-GaN gate with thin AlGaN barrier layer and AlGaN buffer transistor. MRS Communications 11, 517–522 (2021). https://doi.org/10.1557/s43579-021-00067-3

Download citation

Keywords

  • Devices
  • Barrier layer
  • Electrical properties
  • Epitaxy
  • Simulation