Skip to main content

Surface-charge-modified nanocapsules of petroleum sulfonate for reduced retention to carbonate rock surface in high-temperature and high-salinity reservoirs

Abstract

The technologies of chemical-enhanced oil recovery have been studied for decades, as one of the limitations is the poor colloidal stability and strong mineral adsorption of chemicals in harsh reservoir conditions. This study demonstrates that a Nano-Surfactant (NS) formulation of petroleum sulfonate is optimized through surface charge modification with a cationic cocamidopropyl PG-dimonium chloride phosphate (LPC) surfactant. The NS with addition of LPC shows mitigated negative charge on the micelle surface with maintained temperature and salt tolerance in aqueous phase and 30–50% reduced retention on the limestone core plug.

Graphic abstract

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2

References

  1. 1.

    A.O. Gbadamosi, R. Junin, M.A. Manan, A. Agi, A.S. Yusuff, An overview of chemical enhanced oil recovery: recent advances and prospects. Int. Nano Lett. 9, 171–202 (2019)

    CAS  Article  Google Scholar 

  2. 2.

    J. Lu, A. Goudarzi, P. Chen, D.H. Kim, M. Delshad, K.K. Mohanty, K. Sepehrnoori, U.P. Weerasooriya, G.A.J.J.P.S. Pope, Enhanced oil recovery from high-temperature, high-salinity naturally fractured carbonate reservoirs by surfactant flood. J. Pet. Sci. Eng. 124, 122–131 (2014)

    CAS  Article  Google Scholar 

  3. 3.

    C. Da, G. Jian, S. Alzobaidi, J. Yang, S.L. Biswal, G.J. Hirasaki, K.P. Johnston, Design of CO2-in-water foam stabilized with switchable amine surfactants at high temperature in high-salinity brine and effect of oil. Energy Fuels 32, 12259–12267 (2018)

    CAS  Article  Google Scholar 

  4. 4.

    A. Dehghan Monfared, M.H. Ghazanfari, M. Jamialahmadi, A. Helalizadeh, Potential application of silica nanoparticles for wettability alteration of oil-wet calcite: a mechanistic study. Energy Fuels 30, 3947–3961 (2016)

    CAS  Article  Google Scholar 

  5. 5.

    D.C. Standnes, T. Austad, Wettability alteration in chalk: 2 Mechanism for wettability alteration from oil-wet to water-wet using surfactants. J. Pet. Sci. Eng. 28, 123–143 (2000)

    CAS  Article  Google Scholar 

  6. 6.

    G.J. Hirasaki, C.A. Miller, G.A. Pope, Surfactant Based Enhanced Oil Recovery and Foam Mobility Control (Rice Univ, Houston, 2005)

    Book  Google Scholar 

  7. 7.

    D.C. Standnes, I. Skjevrak, Literature review of implemented polymer field projects. J. Petrol. Sci. Eng. 122, 761–775 (2014)

    CAS  Article  Google Scholar 

  8. 8.

    J.G. Jacobsen, B. Shaker Shiran, T. Skauge, K.S. Sorbie, A. Skauge, Qualification of new methods for measuring in situ rheology of non-newtonian fluids in porous media. Polymers 12, 452 (2020)

    CAS  Article  Google Scholar 

  9. 9.

    B. Wei, L. Romero-Zerón, D. Rodrigue, Oil displacement mechanisms of viscoelastic polymers in enhanced oil recovery (EOR): a review. J. Pet. Explor. Prod. Technol. 4, 113–121 (2014)

    CAS  Article  Google Scholar 

  10. 10.

    M. Puerto, G.J. Hirasaki, C.A. Miller, J.R. Barnes, Surfactant systems for EOR in high-temperature, high-salinity environments. SPE J. 17, 11–19 (2012)

    CAS  Article  Google Scholar 

  11. 11.

    Y. Chen, A.S. Elhag, L. Cui, A.J. Worthen, P.P. Reddy, J.A. Noguera, A.M. Ou, K. Ma, M. Puerto, G.J. Hirasaki, Q.P. Nguyen, S.L. Biswal, K.P. Johnston, CO2-in-water foam at elevated temperature and salinity stabilized with a nonionic surfactant with a high degree of ethoxylation. Ind. Eng. Chem. Res. 54, 4252–4263 (2015)

    CAS  Article  Google Scholar 

  12. 12.

    L. Cui, D.M. Khramov, C.W. Bielawski, D.L. Hunter, P.J. Yoon, D.R. Paul, Effect of organoclay purity and degradation on nanocomposite performance, Part 1: Surfactant degradation. Polymer 49, 3751–3761 (2008)

    CAS  Article  Google Scholar 

  13. 13.

    A. Gizzatov, A. Mashat, D. Kosynkin, N. Alhazza, A. Kmetz, S.L. Eichmann, A.I. Abdel-Fattah, Nanofluid of petroleum sulfonate nanocapsules for enhanced oil recovery in high-temperature and high-salinity reservoirs. Energy Fuels 33, 11567–11573 (2019)

    CAS  Article  Google Scholar 

  14. 14.

    K. Ma, L. Cui, Y. Dong, T. Wang, C. Da, G.J. Hirasaki, Adsorption of cationic and anionic surfactants on natural and synthetic carbonate materials. J. Colloid Interface Sci. 408, 164–172 (2013)

    CAS  Article  Google Scholar 

  15. 15.

    S. Djedri, R. Issaadi, D.L. Cerf, L. Picton, N. Moulai-Mostefa, Surfactants synthesis using petroleum fractions and crude oil: application in microemulsion formulation. J. Dispers. Sci. Technol. 31, 877–882 (2010)

    CAS  Article  Google Scholar 

  16. 16.

    M.H. Derkani, A.J. Fletcher, M. Fedorov, W. Abdallah, B. Sauerer, J. Anderson, Z.J. Zhang, Mechanisms of surface charge modification of carbonates in aqueous electrolyte solutions. Colloids Interfaces 3, 62 (2019)

    CAS  Article  Google Scholar 

  17. 17.

    H. Chen, A. Gizzatov, A.I. Abdel-Fattah, Molecular assembly of surfactant mixtures in oil-swollen micelles: implications for high salinity colloidal stability. J. Phys. Chem. B 124, 568–576 (2019)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Ayrat Gizzatov or Amr I. Abdel-Fattah.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 175 kb).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Da, C., Gizzatov, A., Mashat, A. et al. Surface-charge-modified nanocapsules of petroleum sulfonate for reduced retention to carbonate rock surface in high-temperature and high-salinity reservoirs. MRS Communications (2021). https://doi.org/10.1557/s43579-021-00066-4

Download citation

Keywords

  • Adsorption
  • Colloid
  • Fluid
  • Porosity
  • Surface chemistry