Skip to main content

Fabrication of fluorescent carbon dots by laser ablation in alkaline solution coupled with Ag nanoparticles for enhanced SERS

Abstract

In this work, SERS enhancement is realized by plasmon coupling and fluorescence resonance energy transfer (FRET) processes concerning to fluorescent carbon dots (CDs) coupled with silver nanoparticles (Ag-NPs). Laser ablation in alkaline solution is a promising strategy to synthesize well-dispersed CDs with sizes below 10 nm by simultaneously creating defect states and oxygen-related functional groups. SERS studies indicated that an amplified signal can be recorded for the hybrid substrate composed by CDs and Ag-NPs. The optimized hybrid substrate comprised of CDs and cubic Ag-NPs has a SERS detection limit of 10−8 M for 4-ATP, indicating the potential applications for trace detection.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4

Data availability

The datasets generated during and analysed during the current study are available from the corresponding author on reasonable request.

References

  1. 1.

    S.Y. Liang, H.M. Liu, Y.Y. Mu, T.R. Zhai, X.P. Zhang, Gold Nanocluster assembled nanoislands for surface-enhanced Raman scattering application. Guang Pu Xue Yu Guang Pu Fen Xi/Spectrosc. Spectral Anal. 38, 87 (2018)

    CAS  Google Scholar 

  2. 2.

    L. Zhang, Y.J. Weng, X. Liu, W. Gu, X. Zhang, L. Han, Fe(III) Mixed IP6@Au NPs with enhanced SERS activity for detection of 4-ATP. Sci. Rep. 10, 5752 (2020)

    CAS  Article  Google Scholar 

  3. 3.

    J. Wang, Y. Zhao, H. Huang, T. Cong, H. Zhang, K. Liu, L. Pan, Facile synthesis of hybrid silver/porous carbon black substrate for surface-enhanced Raman scattering. Appl. Surf. Sci. 527, 146948 (2020)

    CAS  Article  Google Scholar 

  4. 4.

    P. Thitirat, L. Chutiparn, I. Ryousuke, S. Kazunari, K. Keizo, E. Sanong, O. Kontad, B. Akira, Enhanced organic solar cell performance: multiple surface plasmon resonance and incorporation of silver nanodisks into a grating-structure electrode. Opto-Electron. Adv. 2, 1 (2019)

    Google Scholar 

  5. 5.

    K. Yang, J. Wang, X. Yao, D. Lyu, J. Zhu, Z. Yang, B. Liu, B. Ren, Large-area plasmonic metamaterial with thickness-dependent absorption. Adv. Opt. Mater. 9, 2001375 (2021)

    CAS  Article  Google Scholar 

  6. 6.

    J. Zhang, X. Li, X. Sun, Y. Li, Surface enhanced Raman scattering effects of silver colloids with different shapes. J. Phys. Chem. B 109, 12544 (2005)

    CAS  Article  Google Scholar 

  7. 7.

    R. Zhou, Y. Yin, Y. Liu, J. Cui, X. Li, Y. Zhang, C. Lin, H. Yan, Surfactant mediated synthesis of structured metal nanoparticle by pulsed laser ablation for photocatalysis. Proc. SPIE 10842, 108420F (2019)

    Google Scholar 

  8. 8.

    R. Zhou, Y. Yin, D. Long, J. Cui, H. Yan, W. Liu, J.H. Pan, PVP-assisted laser ablation growth of ag nanocubes anchored on reduced graphene oxide (rGO) for efficient photocatalytic CO2 reduction. Progress Nat. Sci. Mater. Int. 29, 6 (2019)

    CAS  Article  Google Scholar 

  9. 9.

    L. Lu, J. Zhang, L. Jiao, Y. Guan, Large-scale fabrication of nanostructure on bio-metallic substrate for surface enhanced Raman and fluorescence scattering. Nanomaterials (Basel) 9, 916 (2019)

    CAS  Article  Google Scholar 

  10. 10.

    H. Gan, W. Han, Z. Fu, L. Wang, The chain-like Au/carbon dots nanocomposites with peroxidase-like activity and their application for glucose detection. Colloids Surf. B Biointerfaces 199, 111553 (2021)

    CAS  Article  Google Scholar 

  11. 11.

    S.K. Bhunia, L. Zeiri, J. Manna, S. Nandi, R. Jelinek, Carbon-dot/silver-nanoparticle flexible SERS-active films. ACS Appl. Mater. Int. 8, 25637 (2016)

    CAS  Article  Google Scholar 

  12. 12.

    H.J. Yoo, B.E. Kwak, D.H. Kim, Self-quenching origin of carbon dots and the guideline for their solid-state luminescence. J. Phys. Chem. C 123, 27124 (2019)

    CAS  Article  Google Scholar 

  13. 13.

    R. Das, S. Parveen, A. Bora, P.K. Giri, Origin of high photoluminescence yield and high SERS sensitivity of nitrogen-doped graphene quantum dots. Carbon 160, 273 (2020)

    CAS  Article  Google Scholar 

  14. 14.

    G. Jeong, J. Lee, J. Lee, J. Praneerad, C. Choi, P. Supchocksoonthorn, A. Roy, W.-S. Chae, P. Paoprasert, M. Yeo, G. Murali, S. Park, D.-K. Lee, I. In, Microwave-assisted synthesis of multifunctional fluorescent carbon quantum dots from A4/B2 polyamidation monomer sets. Appl. Surf. Sci. 542, 148471 (2021)

    CAS  Article  Google Scholar 

  15. 15.

    A. Tan, G. Yang, X. Wan, Ultra-high quantum yield nitrogen-doped carbon quantum dots and their versatile application in fluorescence sensing, bioimaging and anti-counterfeiting. Spectrochim. Acta A Mol. Biomol. Spectrosc. 253, 119583 (2021)

    CAS  Article  Google Scholar 

  16. 16.

    C. Kishore, J. Ponraj, M. Alagan, D. Chander, Facile synthesis and characterisation of green luminescent carbon nanodots prepared from tender coconut water using the acid-assisted ultrasonic route. Micro Nano Lett. 15, 920 (2020)

    Article  Google Scholar 

  17. 17.

    H. Li, X. He, Y. Liu, H. Huang, S. Lian, S.-T. Lee, Z. Kang, One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties. Carbon 49, 605 (2011)

    CAS  Article  Google Scholar 

  18. 18.

    L. Tian, F. Chen, H. Ding, X. Li, X. Li, The influence of inorganic electrolyte on the properties of carbon quantum dots in electrochemical exfoliation. J. Electroanal. Chem. 878, 114673 (2020)

    CAS  Article  Google Scholar 

  19. 19.

    V.N. Mochalin, O. Shenderova, D. Ho, Y. Gogotsi, Multiple surface plasmon properties and applications of nanodiamonds. Nat. Nanotechnol. 7, 11 (2012)

    CAS  Article  Google Scholar 

  20. 20.

    V. Ciupină, C.P. Lungu, R. Vlădoiu, C. Porosnicu, E. Vasile, V. Nicolescu, A. Mandeş, V. Dincă, O. Cupşa, Carbon-titanium nanostructures: synthesis and characterization. Phys. Scr. 95, 44012 (2020)

    Article  Google Scholar 

  21. 21.

    G.X. Chen, M.H. Hong, T.S. Ong, H.M. Lam, W.Z. Chen, H.I. Elim, W. Ji, T.C. Chong, Carbon nanoparticles based nonlinear optical liquid. Carbon 42, 2735 (2004)

    CAS  Article  Google Scholar 

  22. 22.

    G.X. Chen, M.H. Hong, B. Lan, Z.B. Wang, Y.F. Lu, T.C. Chong, A Convenient way to prepare magnetic colloids by direct Nd:YAG laser ablation. Appl. Surf. Sci. 228, 169 (2004)

    CAS  Article  Google Scholar 

  23. 23.

    R. Ismail, M. Mohsin, A. Ali, K. Hassoon, S. Erten-Ela, Preparation and characterization of carbon nanotubes by pulsed laser ablation in water for optoelectronic application. Phys E Low-dimens. Syst. Nanostruct. 119, 113997 (2020)

    CAS  Article  Google Scholar 

  24. 24.

    A. Nevar, N. Tarasenka, M. Nedelko, N. Tarasenko, Carbon Nanodots with tunable luminescence properties synthesized by electrical discharge in octane. Carbon Lett. 31, 39 (2020)

    Article  Google Scholar 

  25. 25.

    L. Cançado, K. Takai, T. Enoki, M. Endo, Y. Kim, H. Mizusaki, A. Jorio, L. Coelho, R. Paniago, M. Pimenta, General equation for the determination of the crystallite size L[a] of nanographite by Raman spectroscopy. Appl. Phys. Lett. 88, 163106 (2006)

    Article  Google Scholar 

  26. 26.

    G. Oza, Camphor-mediated synthesis of carbon nanoparticles, graphitic shell encapsulated carbon nanocubes and carbon dots for bioimaging. Sci. Rep. 6, 21286 (2016)

    CAS  Article  Google Scholar 

  27. 27.

    M. Sookhakian, Y.M. Amin, W.J. Basirun, M.T. Tajabadi, N. Kamarulzaman, Synthesis, structural, and optical properties of type-II ZnO–ZnS core–shell nanostructure. J. Lumin. 145, 244 (2014)

    CAS  Article  Google Scholar 

  28. 28.

    Z.Y. Yu, S.W. Duo, Facile, ultrafast synthesis of up- and down-conversion fluorescent carbon dots for highly sensitive detection of hematin. Optic. Mater. 107, 110029 (2020)

    CAS  Article  Google Scholar 

  29. 29.

    G.K. Yogesh, E.P. Shuaib, A. Kalai Priya, P. Rohini, S.V. Anandhan, U.M. Krishnan, V. Kalyanavalli, S. Shukla, D. Sastikumar, Synthesis of water-soluble fluorescent carbon nanoparticles (CNPs) from nanosecond pulsed laser ablation in ethanol. Opt. Laser Technol. 135, 106717 (2021)

    CAS  Article  Google Scholar 

  30. 30.

    J. Jin, S. Zhu, Y. Song, H. Zhao, Z. Zhang, Y. Guo, J. Li, W. Song, B. Yang, B. Zhao, Precisely controllable core-shell Ag@carbon dots nanoparticles: application to in situ super-sensitive monitoring of catalytic reactions. ACS Appl. Mater. Int. 8, 27956 (2016)

    CAS  Article  Google Scholar 

  31. 31.

    A.X. Wang, X. Kong, Review of recent progress of plasmonic materials and nano-structures for surface-enhanced Raman scattering. Materials (Basel) 8, 3024 (2015)

    CAS  Article  Google Scholar 

  32. 32.

    J. Li, F. Mei, W.-Y. Li, X.-W. He, K. Yu-Zhang, Study on the fluorescence resonance energy transfer between CdTe QDs and butyl-rhodamine b in the presence of CTMAB and its application on the detection of Hg(II). Spectrochim. Acta A Mol. Biomol. Spectrosc. 70, 811 (2008)

    Article  Google Scholar 

  33. 33.

    Z. Gan, S. Xiong, X. Wu, T. Xu, X. Zhu, X. Gan, J. Guo, J. Shen, L. Sun, P.K. Chu, Mechanism of photoluminescence from chemically derived graphene oxide: role of chemical reduction. Adv. Optic. Mater. 1, 926 (2013)

    Article  Google Scholar 

  34. 34.

    M. Osawa, N. Matsuda, K. Yoshii, I. Uchida, Charge Transfer resonance Raman process in surface-enhanced Raman scattering from P-aminothiophenol adsorbed on silver: herzberg-teller contribution. J. Phys. Chem. 98, 12702 (1994)

    CAS  Article  Google Scholar 

  35. 35.

    L. Sun, D. Zhao, M. Ding, H. Zhao, Z. Zhang, B. Li, D. Shen, A White-emitting ZnO–Au nanocomposite and its SERS applications. Appl. Surf. Sci. 258, 7813 (2012)

    CAS  Article  Google Scholar 

  36. 36.

    L. Sun, D. Zhao, Z. Zhang, B. Li, D. Shen, DNA-based fabrication of density-controlled vertically aligned ZnO nanorod arrays and their SERS applications. J. Mater. Chem. 21, 9674 (2011)

    CAS  Article  Google Scholar 

  37. 37.

    L. Xu, H. Liu, Z. Hui, M. Hong, One-step fabrication of metal nanoparticles on polymer film by femtosecond LIPAA method for SERS detection. Talanta 228, 122204 (2021)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the Fujian Provincial Science and Technology Programme (Industry Oriented Key Project, No. 2020H0006), National Natural Science Foundation of China (No. 61605162) and Collaborative Innovation Center of High-End Equipment Manufacturing in Fujian.

Funding

Fujian Provincial Science and Technology Programme (Industry Oriented Key Project, No. 2020H0006), National Natural Science Foundation of China (No. 61605162).

Author information

Affiliations

Authors

Contributions

Conceptualization: ZC, RZ; Methodology: ZC, RZ; Investigation: LL; Validation: ZC; Data Curation: ZC, LL; Writing—Original Draft: ZC; Writing—Review & Editing: RZ, JC, HY; Resources: RZ, JC, HY; Supervision: RZ; Management: RZ; Funding acquisition: RZ.

Corresponding author

Correspondence to Rui Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1339 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Zhou, R., Cui, J. et al. Fabrication of fluorescent carbon dots by laser ablation in alkaline solution coupled with Ag nanoparticles for enhanced SERS. MRS Communications 11, 489–497 (2021). https://doi.org/10.1557/s43579-021-00060-w

Download citation

Keywords

  • Surface enhanced Raman spectroscopy (SERS)
  • Laser ablation
  • Nanostructure
  • Optical properties