Evaluation of the spinodal decomposition mechanism in 22Cr–5Ni duplex stainless steel using low-field magnetic analysis


This study proposes the application of low-field magnetic analysis (LFMA) as an alternative nondestructive evaluation method for the detection of microstructural changes of duplex stainless steel due to spinodal decomposition mechanism in a process known as “475°C embrittlement.” Structural, morphological, chemical, mechanical, and magnetic characterizations were performed. Two magnetic methods were used: magnetization versus field measurements at 300 K using a commercial magneto of meter and LFMA testing. The results showed a convergent behavior in agreement with the literature. Experimental results conclusively indicated that the new methodology is consistent and sensitive to the 475°C embrittlement process.

Graphic abstract

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3

Data availability

Data will be made available on reasonable request.


  1. 1.

    R. Gunn, Duplex Stainless Steels Microstructure Properties and Applications (Abington Publishing, Cambridge, 2003)

    Google Scholar 

  2. 2.

    L. Karlsson, Welding duplex stainless steels—a review of current recommendations. Weld. World 56, 65–76 (2012). https://doi.org/10.1007/bf03321351

    CAS  Article  Google Scholar 

  3. 3.

    IMOA (International Molybdenum Association), ed., Practical Guidelines for the Fabrication of Duplex Stainless Steels, 3rd ed. (London, 2014)

  4. 4.

    C. Pareige, S. Novy, S. Saillet, P. Pareige, Study of phase transformation and mechanical properties evolution of duplex stainless steels after long term thermal ageing (> 20 years). J. Nucl. Mater. 411, 90–96 (2011). https://doi.org/10.1016/j.jnucmat.2011.01.036

    CAS  Article  Google Scholar 

  5. 5.

    C. Gennari, L. Pezzato, E. Piva, R. Gobbo, I. Calliari, Influence of small amount and different morphology of secondary phases on impact toughness of UNS S32205 duplex stainless steel. Mater. Sci. Eng. A 729, 149–156 (2018). https://doi.org/10.1016/j.msea.2018.05.063

    CAS  Article  Google Scholar 

  6. 6.

    R. Magnabosco, Kinetics of sigma phase formation in a duplex stainless steel. Mater. Res. 12, 321–327 (2009). https://doi.org/10.1590/s1516-14392009000300012

    CAS  Article  Google Scholar 

  7. 7.

    D.M. Escriba, E. Materna-Morris, R.L. Plaut, A.F. Padilha, Chi-phase precipitation in a duplex stainless steel. Mater. Charact. 60, 1214–1219 (2009). https://doi.org/10.1016/j.matchar.2009.04.013

    CAS  Article  Google Scholar 

  8. 8.

    R.O. Sousa, P. Lacerda, P.J. Ferreira, L.M.M. Ribeiro, On the precipitation of sigma and chi phases in a cast super duplex stainless steel. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 50, 4758–4778 (2019). https://doi.org/10.1007/s11661-019-05396-6

    CAS  Article  Google Scholar 

  9. 9.

    N. Llorca-Isern, H. López-Luque, I. López-Jiménez, M.V. Biezma, Identification of sigma and chi phases in duplex stainless steels. Mater. Charact. 112, 20–29 (2016). https://doi.org/10.1016/j.matchar.2015.12.004

    CAS  Article  Google Scholar 

  10. 10.

    S.S.M. Tavares, R.F. De Noronha, M.R. Da Silva, J.M. Neto, S. Pairis, 475°C embrittlement in a duplex stainless steel UNS S31803 (2001)

  11. 11.

    J.D. Tucker, M.K. Miller, G.A. Young, Assessment of thermal embrittlement in duplex stainless steels 2003 and 2205 for nuclear power applications. Acta Mater. 87, 15–24 (2015). https://doi.org/10.1016/j.actamat.2014.12.012

    CAS  Article  Google Scholar 

  12. 12.

    Y.H. Yao, J.F. Wei, Z.P. Wang, Effect of long-term thermal aging on the mechanical properties of casting duplex stainless steels. Mater. Sci. Eng. A 551, 116–121 (2012). https://doi.org/10.1016/j.msea.2012.04.105

    CAS  Article  Google Scholar 

  13. 13.

    J.K. Sahu, U. Krupp, R.N. Ghosh, H.-J. Christ, Effect of 475°C embrittlement on the mechanical properties of duplex stainless steel. Mater. Sci. Eng. A 508, 1–14 (2009). https://doi.org/10.1016/j.msea.2009.01.039

    CAS  Article  Google Scholar 

  14. 14.

    C. Ornek, J. Walton, T. Hashimoto, T.L. Ladwein, S.B. Lyon, D.L. Engelberg, Characterization of 475°C embrittlement of duplex stainless steel microstructure via scanning Kelvin probe force microscopy and magnetic force microscopy. J. Electrochem. Soc. 164, 207–217 (2017). https://doi.org/10.1149/2.0311706jes

    CAS  Article  Google Scholar 

  15. 15.

    K.H. Lo, C.H. Shek, J.K.L. Lai, Recent developments in stainless steels. Mater. Sci. Eng. R Rep. 65, 39–104 (2009). https://doi.org/10.1016/j.mser.2009.03.001

    CAS  Article  Google Scholar 

  16. 16.

    G. Gutiérrez-Vargas, A. Ruiz, V.H. López-Morelos, J.-Y. Kim, J. González-Sánchez, A. Medina-Flores, Evaluation of 475°C embrittlement in UNS S32750 super duplex stainless steel using four-point electric conductivity measurements. Nucl. Eng. Technol. (2021). https://doi.org/10.1016/j.net.2021.03.018

    Article  Google Scholar 

  17. 17.

    G. Gutiérrez-Vargas, A. Ruiz, J.-Y. Kim, L.J. Jacobs, Characterization of thermal embrittlement in 2507 super duplex stainless steel using nonlinear acoustic effects. NDT E Int. 94, 101–108 (2018). https://doi.org/10.1016/j.ndteint.2017.12.004

    CAS  Article  Google Scholar 

  18. 18.

    G. Gutiérrez-Vargas, A. Ruiz, J.Y. Kim, V.H. López-Morelos, R.R. Ambriz, Evaluation of thermal embrittlement in 2507 super duplex stainless steel using thermoelectric power. Nucl. Eng. Technol. 51, 1816–1821 (2019). https://doi.org/10.1016/j.net.2019.05.017

    CAS  Article  Google Scholar 

  19. 19.

    D. Silva, L. Lima, A. Araújo, V. Silva, R. Raimundo, I. Damasceno, T. Simões, R. Gomes, The effect of microstructural changes on mechanical and electrochemical corrosion properties of duplex stainless steel aged for short periods. Materials 13, 5511 (2020). https://doi.org/10.3390/ma13235511

    CAS  Article  Google Scholar 

  20. 20.

    D.D.S. Silva, J.M.B. Sobrinho, C.R. Souto, R.M. Gomes, Application of electromechanical impedance technique in the monitoring of sigma phase embrittlement in duplex stainless steel. Mater. Sci. Eng. A 788, 139457 (2020). https://doi.org/10.1016/j.msea.2020.139457

    CAS  Article  Google Scholar 

  21. 21.

    D.D.S. Silva, R.A. Raimundo, R.A. Torquato, G.L. Faria, M.A. Morales, T.A. Simões, R.M. Gomes, Low-field magnetic analysis for sigma phase embrittlement monitoring in thermally aged 22Cr duplex stainless steel. J. Magn. Magn. Mater. 513, 167072 (2020). https://doi.org/10.1016/j.jmmm.2020.167072

    CAS  Article  Google Scholar 

  22. 22.

    M.V. Biezma, U. Martin, P. Linhardt, J. Ress, C. Rodríguez, D.M. Bastidas, Non-destructive techniques for the detection of sigma phase in duplex stainless steel: a comprehensive review. Eng. Fail. Anal. 122, 105227 (2021). https://doi.org/10.1016/j.engfailanal.2021.105227

    CAS  Article  Google Scholar 

  23. 23.

    E.H. Hall, On a new action of the magnet on electric currents. Am. J. Math. 2, 287–292 (1879)

    Article  Google Scholar 

  24. 24.

    C.M. Hurd, The Hall Effect in Metals and Alloys (Springer, Berlin, 1972)

    Book  Google Scholar 

  25. 25.

    D.D.S. Silva, T.A. Simões, D.A. Macedo, A.H.S. Bueno, S.M. Torres, R.M. Gomes, Microstructural influence of sigma phase on pitting corrosion behavior of duplex stainless steel/NaCl electrolyte couple. Mater. Chem. Phys. (2020). https://doi.org/10.1016/j.matchemphys.2020.124056

    Article  Google Scholar 

  26. 26.

    K. Chandra, R. Singhal, V. Kain, V.S. Raja, Low temperature embrittlement of duplex stainless steel: correlation between mechanical and electrochemical behavior. Mater. Sci. Eng. A 527, 3904–3912 (2010). https://doi.org/10.1016/j.msea.2010.02.069

    CAS  Article  Google Scholar 

  27. 27.

    M. Breda, I. Calliari, E. Ramous, M. Pizzo, L. Corain, G. Straffelini, Ductile-to-brittle transition in a Zeron®100 SDSS in wrought and aged conditions. Mater. Sci. Eng. A 585, 57–65 (2013). https://doi.org/10.1016/j.msea.2013.07.068

    CAS  Article  Google Scholar 

  28. 28.

    S.S.M. Tavares, V.F. Terra, P. De Lima Neto, D.E. Matos, Corrosion resistance evaluation of the UNS S31803 duplex stainless steels aged at low temperatures (350 to 550°C) using DLEPR tests. J. Mater. Sci. 40, 4025–4028 (2005). https://doi.org/10.1007/s10853-005-1993-9

    CAS  Article  Google Scholar 

  29. 29.

    S. Tsuchiya, Y. Ishikawa, M. Ohtaka, T. Yoshimura, Atom probe study of the aging embrittlement of cast duplex stainless steel. JSME Int. J. Ser. A, Mech. Mater. Eng. 38, 384–392 (1995). https://doi.org/10.1299/jsmea1993.38.3_384

    CAS  Article  Google Scholar 

  30. 30.

    S.S.M. Tavares, P.D.S. Pedrosa, J.R. Teodósio, M.R. Da Silva, J.M. Neto, S. Pairis, Magnetic properties of the UNS S39205 duplex stainless steel. J. Alloys Compd. 351, 283–288 (2003). https://doi.org/10.1016/s0925-8388(02)01076-9

    CAS  Article  Google Scholar 

  31. 31.

    N. Maeda, T. Goto, T. Kamimura, T. Naito, S. Kumano, Y. Nakao, Changes in electromagnetic properties during thermal aging of duplex stainless steel. Int. J. Press. Vessel. Pip. 71, 7–12 (1997). https://doi.org/10.1016/s0308-0161(96)00015-4

    CAS  Article  Google Scholar 

  32. 32.

    S.S.M. Tavares, M.R. Da Silva, J.M. Neto, Magnetic property changes during embrittlement of a duplex stainless steel. J. Alloys Compd. 313, 168–173 (2000). https://doi.org/10.1016/s0925-8388(00)01062-8

    CAS  Article  Google Scholar 

Download references


This research was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brazil (CAPES) – Finance Code 001.


General financial support received from CAPES. No interference with study design and data analysis.

Author information



Corresponding author

Correspondence to David D. S. Silva.

Ethics declarations

Conflicts of interest

The authors declare that there are no known conflicts of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Silva, D.D.S., Raimundo, R.A., Morales, M.A. et al. Evaluation of the spinodal decomposition mechanism in 22Cr–5Ni duplex stainless steel using low-field magnetic analysis. MRS Communications (2021). https://doi.org/10.1557/s43579-021-00057-5

Download citation


  • Phase transformation
  • Second phases
  • Embrittlement
  • Magnetic properties
  • Hall effect