Skip to main content

Improvement in power inductor performance at 3 MHz by mixing carbonyl iron powder with Fe–Si–Cr crystalline alloy

Abstract

We investigated the magnetic properties of Fe–Si–Cr crystalline alloy (FSC) by adding carbonyl iron powder (CIP) composites. Toroid core was prepared by mixing in various mix ratios FSC and CIP. Comparison of the density of the cores and the calculated packing fraction showed a similar tendency. Comparison of the packing fraction/permeability relationship and the Ollendorff equation proved that as the packing fraction increases, the permeability increases. The core-loss shows a decreasing tendency as the packing fraction increases. The sample, which shows the highest permeability and packing fraction, showed the lowest core loss at 3 MHz of 112.38 mW/cm3.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. 1.

    Q. Zhu, L. Li, M.S. Masteller, G.J. Del Corso, Appl. Phys. Lett. 69, 3917 (1996)

    CAS  Article  Google Scholar 

  2. 2.

    A. Makino, IEEE Trans. Magn. 48, 1331 (2012)

    CAS  Article  Google Scholar 

  3. 3.

    A. Goldman, Handbook of Modern Ferromagnetic Materials (Kluwer Academic Publishers, Boston, 1999), p. 183

    Book  Google Scholar 

  4. 4.

    H. Shokrollahi, K. Janghorban, J. Mater. Process. Technol. 189, 1–12 (2007)

    CAS  Article  Google Scholar 

  5. 5.

    Y.K. Park, K.J. Yang, J. Korean. Inst. Electr. Electron. Mater. Eng. 9, 76–92 (1996)

    Google Scholar 

  6. 6.

    H.I. Hsiang, J. Mater. Sci. Mater. Electron. 31, 16089–16110 (2020)

    CAS  Article  Google Scholar 

  7. 7.

    H. Matsuura, and K. Otake, Magnetic material and coil component using the same. U.S. Patent 8 416 051, B2, 27 April 2011.

  8. 8.

    Y. Xu, J. Luo, W. Yao, J. Xu, T. Li, J. Alloys Compd. 636, 310 (2015)

    CAS  Article  Google Scholar 

  9. 9.

    Q. Liu, Z. Zi, M. Zhang, A. Pang, J. Dai, Y. Sun, J. Alloys Compd. 561, 65 (2013)

    CAS  Article  Google Scholar 

  10. 10.

    R.B. Yang, C.Y. Tsay, D.S. Hung, W.F. Liang, Y.D. Yao, C.K. Lin, J. Appl. Phys. 105, 07A528 (2009)

    Article  Google Scholar 

  11. 11.

    L. Chang, Y. Zhang, Y. Dong, Q. Li, A. He, C. Chang, X. Wang, SN Appl. Sci. 1, 902 (2019)

    CAS  Article  Google Scholar 

  12. 12.

    T. Saito, S. Takemoto, T. Iriyama, IEEE Trans. Magn. 41, 3301 (2005)

    CAS  Article  Google Scholar 

  13. 13.

    T. Saito, S. Takemoto, J. Jpn. Soc. Powder Powder Metall. 52, 571 (2005)

    CAS  Article  Google Scholar 

  14. 14.

    B.V. Velamakanni, F.F. Lunge, J. Am. Ceram. Soc. 74, 166 (1991)

    CAS  Article  Google Scholar 

  15. 15.

    H.Y. Sohn, C. Moreland, Can. J. Chem. Eng. 46, 162 (1968)

    Article  Google Scholar 

  16. 16.

    J.G. Yeo, D.H. Kim, Y.J. Choi, B.W. Lee, J. Elec. Mater. 48, 6018 (2019)

    CAS  Article  Google Scholar 

  17. 17.

    Z. Ma, Y. Zhang, C.T. Cao, J. Yuan, Q.F. Liu, J.B. Wang, Phys. B Condens. Matter. 406, 4620 (2011)

    CAS  Article  Google Scholar 

  18. 18.

    R. Hergt, S. Dutz, M. Röder, J. Phys. Condens. Matter 20, 385214 (2008)

    Article  Google Scholar 

  19. 19.

    G. Herzer, IEEE Trans. Magn. 26, 1397 (1990)

    CAS  Article  Google Scholar 

  20. 20.

    S.X. Li, J. Zhao, P. Ju, Y. Xie, Chin. Sci. Bull. 55, 114 (2010)

    Article  Google Scholar 

  21. 21.

    M. Suzuki, H. Kada, M. Hirota, Adv. Powder Tech. 10, 353 (1999)

    Article  Google Scholar 

  22. 22.

    P. Jang, B. Lee, G. Choi, J. Kor. Magn. Soc. 20, 13 (2010)

    Article  Google Scholar 

  23. 23.

    J.E. Konwles, J. Magn. Magn. Mater. 25, 105 (1981)

    Article  Google Scholar 

  24. 24.

    F. Ollendorff, Arch. Elektrotechn. 25, 436 (1931)

    Article  Google Scholar 

  25. 25.

    M. Anhalt, B. Weidenfeller, J.-L. Mattei, J. Magn. Magn. Mater. 320, e844 (2008)

    CAS  Article  Google Scholar 

  26. 26.

    D. Pan, D. Li, H. Han, M. Wei, Mater. Res. Express 6, 036103 (2018)

    Article  Google Scholar 

  27. 27.

    Y. Guo, J.G. Zhu, J. Zhong, H. Lu, J.X. Jin, IEEE Trans. Magn. 44, 279 (2008)

    Article  Google Scholar 

  28. 28.

    H. Kim, S.Y. An, J. Magn. 20, 138 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Hankuk University of Foreign Studies Research Fund of 2020 and Materials, Components & Equipment Research Program funded by the Gyeonggi Province (AICT-003-T1).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bo Wha Lee.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Choi, Y.J., Ahn, J.H., Kim, S.W. et al. Improvement in power inductor performance at 3 MHz by mixing carbonyl iron powder with Fe–Si–Cr crystalline alloy. MRS Communications 11, 457–461 (2021). https://doi.org/10.1557/s43579-021-00055-7

Download citation

Keywords

  • Composite
  • Magnetic properties
  • Metal
  • Electronic materials
  • Alloy
  • Powder