On the discrepancies between the experimental realization and the thermodynamic predictions of stability of rhombohedral boron nitride


Equilibrium thermodynamic calculations were performed to generate diagrams indicating the phase fields wherein either hexagonal or rhombohedral films of boron nitride can be deposited via chemical vapor deposition as a function of temperature, choice of B-source, and N/B ratio derived from NH3 and the B-source. Similar diagrams calculated using experimental conditions employed by groups who have synthesized r-BN films revealed that both in experiment and equilibrium, the choice of B-source strongly affects the size of the single-phase field for r-BN and, in general, deposition of r-BN can be realized at temperatures more than 100°C below that predicted by equilibria.

Graphical abstract

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files. The thermodynamic information for all species other than h-BN (s) and r-BN (s) is contained within the FactPS thermodynamic database, native to FactSage computational software.[27]


  1. 1.

    F.P. Bundy, R.H. Wentorf, Direct transformation of hexagonal boron nitride to denser forms. J. Chem. Phys. 38, 1144 (1963). https://doi.org/10.1063/1.1733815

    CAS  Article  Google Scholar 

  2. 2.

    T. Ishii, T. Sato, Growth of single crystals of hexagonal boron nitride. J. Cryst. Growth 61, 689 (1983). https://doi.org/10.1016/0022-0248(83)90199-9

    CAS  Article  Google Scholar 

  3. 3.

    R.T. Paine, C.K. Narula, Synthetic routes to boron nitride. Chem. Rev. 90, 73 (1990). https://doi.org/10.1021/cr00099a004

    CAS  Article  Google Scholar 

  4. 4.

    V.L. Solozhenko, I.A. Petrusha, A.A. Svirid, Thermal phase stability of rhombohedral boron nitride. High Press. Res. 15, 95 (1996). https://doi.org/10.1080/08957959608240463

    Article  Google Scholar 

  5. 5.

    L. Bourgeois, Y. Bando, T. Sato, Tubes of rhombohedral boron nitride. J. Phys. D 33, 1902 (2000). https://doi.org/10.1088/0022-3727/33/15/321

    CAS  Article  Google Scholar 

  6. 6.

    T. Oku, K. Hiraga, T. Matsuda, T. Hirai, M. Hirabayashi, Twin structures of rhombohedral and cubic boron nitride prepared by chemical vapor deposition method. Diam. Relat. Mater. 12, 1138 (2003). https://doi.org/10.1016/S0925-9635(02)00329-1

    CAS  Article  Google Scholar 

  7. 7.

    R.H. Wentorf, Cubic form of boron nitride. J. Chem. Phys. 26, 956 (1957). https://doi.org/10.1063/1.1745964

    CAS  Article  Google Scholar 

  8. 8.

    V.L. Solozhenko, Boron nitride phase diagram. State of the art. High Press. Res. 13, 199 (1995). https://doi.org/10.1080/08957959508200884

    Article  Google Scholar 

  9. 9.

    F.R. Corrigan, F.P. Bundy, Direct transitions among the allotropic forms of boron nitride at high pressures and temperatures. J. Chem. Phys. 63, 3812 (1975). https://doi.org/10.1063/1.431874

    CAS  Article  Google Scholar 

  10. 10.

    J. Thomas Jr., N.E. Weston, T.E. O’Connor, Turbostratic boron nitride, thermal transformation to ordered-layer-lattice boron nitride. Phys. Inorg. Chem. 84, 4619 (1963). https://doi.org/10.1021/ja00883a001

    Article  Google Scholar 

  11. 11.

    S. Alkoy, C. Toy, T. Gönül, A. Tekin, Crystallization behavior and characterization of turbostratic boron nitride. J. Eur. Ceram. Soc. 17, 1415 (1997). https://doi.org/10.1016/S0955-2219(97)00040-X

    CAS  Article  Google Scholar 

  12. 12.

    F.P. Bundy, Direct conversion of graphite to diamond in static pressure apparatus. J. Chem. Phys. 38, 631 (1963). https://doi.org/10.1063/1.1733716

    CAS  Article  Google Scholar 

  13. 13.

    V.L. Solozhenko, K.S. Gavrichev, Thermodynamic properties of boron nitride. in Wide Band Gap Electron. Mater., edited by M. Prelas, P. Gielisse, G. Popovici, B. Spitsyn, T. Stacy, 1st ed. (Kluwer Academic Publishers, Minsk, Belarus, 1995), pp. 377–392. https://doi.org/10.1007/978-94-011-0173-8

  14. 14.

    M. Okamoto, Y. Utsumi, Y. Osaka, Mechanical properties of cubic boron nitride film on Si prepared by ECR plasma. Plasma Sources Sci. Technol. 2, 1 (1993). https://doi.org/10.1088/0963-0252/2/1/001

    CAS  Article  Google Scholar 

  15. 15.

    A. Weber, U. Bringmann, R. Nikulski, C.P. Klages, Electron cyclotron resonance plasma deposition of cubic boron nitride using N-trimethylborazine. Surf. Coat. Technol. 60, 493 (1993). https://doi.org/10.1016/0257-8972(93)90139-F

    CAS  Article  Google Scholar 

  16. 16.

    W.J. Zhang, Y.M. Chong, I. Bello, S.T. Lee, Nucleation, growth and characterization of cubic boron nitride films. J. Phys. D 40, 6159 (2007). https://doi.org/10.1088/0022-3727/40/20/S03

    CAS  Article  Google Scholar 

  17. 17.

    S. Matsumoto, W.J. Zhang, The introducing of flourine into the deposition of BN: a successful method to obtain high-quality, thick cBN films with low residual stress. Diam. Relat. Mater. 10, 1868 (2001)

    CAS  Article  Google Scholar 

  18. 18.

    Y. Kobayashi, T. Akasaka, Hexagonal BN epitaxial growth on (0 0 0 1) sapphire substrate by MOVPE. J. Cryst. Growth 310, 5044 (2008). https://doi.org/10.1016/j.jcrysgro.2008.07.010

    CAS  Article  Google Scholar 

  19. 19.

    Q.S. Paduano, M. Snure, J. Bondy, T.W.C. Zens, Self-terminating growth in hexagonal boron nitride by metal organic chemical vapor deposition. Appl. Phys. Express 7, 1 (2014). https://doi.org/10.7567/APEX.7.071004

    CAS  Article  Google Scholar 

  20. 20.

    Y. Shi, C. Hamsen, X. Jia, K.K. Kim, A. Reina, M. Hofmann, A.L. Hsu, K. Zhang, H. Li, Z.Y. Juang, M.S. Dresselhaus, L.J. Li, J. Kong, Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition. Nano Lett. 10, 4134 (2010). https://doi.org/10.1021/nl1023707

    CAS  Article  Google Scholar 

  21. 21.

    K.K. Kim, A. Hsu, X. Jia, S.M. Kim, Y. Shi, M. Dresselhaus, T. Palacios, J. Kong, Synthesis and characterization of hexagonal boron nitride film as a dielectric layer for graphene devices. ACS Nano 6, 8583 (2012). https://doi.org/10.1021/nn301675f

    CAS  Article  Google Scholar 

  22. 22.

    M. Chubarov, H. Pedersen, H. Högberg, J. Jensen, A. Henry, Growth of high quality epitaxial rhombohedral boron nitride. Cryst. Growth Des. 12, 3215 (2012). https://doi.org/10.1021/cg300364y

    CAS  Article  Google Scholar 

  23. 23.

    L. Souqui, H. Pedersen, H. Högberg, Thermal chemical vapor deposition of epitaxial rhombohedral boron nitride from trimethylboron and ammonia. J. Vac. Sci. Technol. A 37, 020603 (2019). https://doi.org/10.1116/1.5085192

    CAS  Article  Google Scholar 

  24. 24.

    H. Pedersen, B. Alling, H. Högberg, A. Ektarawong, Thermodynamic stability of hexagonal and rhombohedral boron nitride under chemical vapor deposition conditions from van der Waals corrected first principles calculations. J. Vac. Sci. Technol. A 37, 040603 (2019). https://doi.org/10.1116/1.5107455

    CAS  Article  Google Scholar 

  25. 25.

    M. Chubarov, H. Högberg, A. Henry, H. Pedersen, Review article: Challenge in determining the crystal structure of epitaxial 0001 oriented sp 2 -BN films. J. Vac. Sci. Technol. A 36, 030801 (2018). https://doi.org/10.1116/1.5024314

    CAS  Article  Google Scholar 

  26. 26.

    M. Chubarov, H. Pedersen, H. Högberg, Z. Czigány, M. Garbrecht, A. Henry, Polytype pure sp2-BN thin films as dictated by the substrate crystal structure. Chem. Mater. 27, 1640 (2015). https://doi.org/10.1021/cm5043815

    CAS  Article  Google Scholar 

  27. 27.

    C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, A.E. Gheribi, K. Hack, I.H. Jung, Y.B. Kang, J. Melançon, A.D. Pelton, S. Petersen, C. Robelin, J. Sangster, P. Spencer, M.A. Van Ende, FactSage thermochemical software and databases. Calphad Comput. Coupling Phase Diagrams Thermochem. 54, 35 (2016). https://doi.org/10.1016/j.calphad.2016.05.002

    CAS  Article  Google Scholar 

  28. 28.

    M. Imam, C. Höglund, J. Jensen, L. Hultman, J. Birch, H. Pedersen, K. Gaul, A. Stegmüller, R. Tonner, Gas phase chemical vapor deposition chemistry of triethylboron probed by boron-carbon thin film deposition and quantum chemical calculations. J. Mater. Chem. C 3, 10898 (2015). https://doi.org/10.1039/C5TC02293B

    CAS  Article  Google Scholar 

  29. 29.

    M. Imam, L. Souqui, J. Herritsch, A. Stegmüller, C. Höglund, S. Schmidt, R. Hall-Wilton, H. Högberg, J. Birch, R. Tonner, H. Pedersen, Gas phase chemistry of trimethylboron in thermal chemical vapor deposition. J. Phys. Chem. C 121, 26465 (2017). https://doi.org/10.1021/acs.jpcc.7b09538

    CAS  Article  Google Scholar 

  30. 30.

    R. F. Davis, Organometallic vapor phase epitaxial growth of group III nitrides. in Compr. Semicond. Sci. Technol., edited by P. Bhattacharya, R. Fornari, and H. Kamimura (Elsevier B.V., Amsterdam, 2011), pp. 339–367. https://doi.org/10.1016/j.jallcom.2009.02.108

  31. 31.

    T. F. Kuech, in Handb. Cryst. Growth, edited by T. F. Kuech, 2nd ed. (Elsevier B.V., Madison, WI, USA, 2015), pp. 869–907. https://doi.org/10.1016/B978-0-444-63304-0.00021-4

  32. 32.

    T. Ishii, T. Sato, Y. Sekikawa, M. Iwata, Growth of whiskers of hexagonal boron nitride. J. Cryst. Growth 52, 285 (1981). https://doi.org/10.1016/0022-0248(81)90206-2

    CAS  Article  Google Scholar 

  33. 33.

    L. Ye, F. Liang, L. Zhao, X. He, W. Fang, H. Chen, X. Wang, J. Wu, S. An, Catalyzed synthesis of rhombohedral boron nitride in sodium chloride molten salt. Ceram. Int. 42, 11626 (2016). https://doi.org/10.1016/j.ceramint.2016.04.062

    CAS  Article  Google Scholar 

  34. 34.

    T. Sato, Influence of monovalent anions on the formation of rhombohedral boron nitride. Proc. Japan Acad. Ser. B 61, 459 (1985). https://doi.org/10.2183/pjab.61.459

    CAS  Article  Google Scholar 

Download references


Funding for this work was made possible thanks to the National GEM Consortium Fellowship, the Neil and Jo Bushnell Fellowship in Engineering, and the John and Claire Bertucci Fellowship.

Author information



Corresponding author

Correspondence to Philip M. Jean-Remy.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 23 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jean-Remy, P.M., Davis, R.F. On the discrepancies between the experimental realization and the thermodynamic predictions of stability of rhombohedral boron nitride. MRS Communications (2021). https://doi.org/10.1557/s43579-021-00053-9

Download citation


  • 2D materials
  • Chemical vapor deposition
  • Phase equilibria
  • Thermodynamics
  • Thin film