Magnetic TiO2@Fe3O4/reduced graphene oxide nanocomposites with enhanced photocatalytic activities

Abstract

Ternary nanocomposite of TiO2@Fe3O4/reduced graphene oxide hydrogel was prepared as an effective and recyclable photocatalyst to degrade methylene blue dye. Preliminary synthesized Fe3O4 colloidal solution and in-situ synthesized TiO2 (or commercial P25) nanoparticles with different ratios were anchored on the surface of reduced graphene oxide by hydrothermal method. The composite photocatalysts were characterized by XRD, Raman, SEM, TEM, XPS, BET, and TG. The studies indicated in-situ synthesized TiO2 ternary composite displayed higher adsorption and photocatalytic activity than pure P25 and its composite. According to the obtained data, the TFG-2 catalyst with a high specific surface area of 302.28 m2g−1 showed the best degradability, achieving almost 100% elimination efficiency of MB (50 mg/L) within 80 min at neutral condition under simulated solar irradiation. Moreover, benefiting from the superparamagnetism of Fe3O4, the composites can be easily recycled and reapplied without significant activity loss after five degradation cycles. The results displayed that the degradation ability was attributed to the synergetic effect between three components. The adsorption and photocatalytic properties of TiO2@Fe3O4/RGO nanocomposites confirmed the promising dual-purpose application in wastewater treatment.

Graphic abstract

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. 1.

    V.K.H. Bui, D. Park, T.N. Pham, Y. An, J.S. Choi, H.U. Lee, O.H. Kwon, J.Y. Moon, K.T. Kim, Y.C. Lee, Synthesis of MgAC-Fe3O4/TiO2 hybrid nanocomposites via sol-gel chemistry for water treatment by photo-Fenton and photocatalytic reactions. Sci. Rep. 9, 11855 (2019)

    Article  CAS  Google Scholar 

  2. 2.

    D. Du, W. Shi, L. Wang, J. Zhang, Yolk-shell structured Fe3O4@void@TiO2 as a photo-Fenton-like catalyst for the extremely efficient elimination of tetracycline. Appl. Catal. B 200, 484–492 (2017)

    CAS  Article  Google Scholar 

  3. 3.

    X. Yu, X. Lin, W. Feng, W. Li, Effective removal of tetracycline by using bio-templated synthesis of TiO2/Fe3O4 heterojunctions as a UV–Fenton catalyst. Catal. Lett. 149, 552–560 (2018)

    Article  CAS  Google Scholar 

  4. 4.

    P. Zhang, Z. Mo, L. Han, Y. Wang, G. Zhao, C. Zhang, Z. Li, Magnetic recyclable TiO2/multi-walled carbon nanotube nanocomposite: synthesis, characterization and enhanced photocatalytic activity. J. Mol. Catal. A 402, 17–22 (2015)

    CAS  Article  Google Scholar 

  5. 5.

    P. Zhang, Z. Mo, L. Han, X. Zhu, B. Wang, C. Zhang, Preparation and photocatalytic performance of magnetic TiO2/montmorillonite/Fe3O4 nanocomposites. Ind. Eng. Chem. Res. 53, 8057–8061 (2014)

    CAS  Article  Google Scholar 

  6. 6.

    C.P. Athanasekou, V. Likodimos, P. Falaras, Recent developments of TiO2 photocatalysis involving advanced oxidation and reduction reactions in water. J. Environ. Chem. Eng. 6, 7386–7394 (2018)

    CAS  Article  Google Scholar 

  7. 7.

    Z.-D. Meng, L. Zhu, T. Ghosh, C.-Y. Park, K. Ullah, V. Nikam, W.-C. Oh, Ag2Se-graphene/TiO2 nanocomposites, sonochemical synthesis and enhanced photocatalytic properties under visible light. Bull. Korean Chem. Soc. 33, 3761–3766 (2012)

    CAS  Article  Google Scholar 

  8. 8.

    P. Niu, D. Wang, A. Wang, Y. Liang, X. Wang, Fabrication of bifunctional TiO2/POM microspheres using a layer-by-layer method and photocatalytic activity for methyl orange degradation. J. Nanomater. 2018, 1–8 (2018)

    Article  CAS  Google Scholar 

  9. 9.

    S.D. Perera, R.G. Mariano, K. Vu, N. Nour, O. Seitz, Y. Chabal, K.J. Balkus, Hydrothermal synthesis of graphene-TiO2 nanotube composites with enhanced photocatalytic activity. ACS Catal. 2, 949–956 (2012)

    CAS  Article  Google Scholar 

  10. 10.

    X. Xu, H. Li, Q. Zhang, H. Hu, Z. Zhao, J. Li, J. Li, Y. Qiao, Self-sensing, ultralight, and conductive 3d graphene/iron oxide aerogel elastomer deformable in a magnetic field. ASC Nano 4, 3969–3977 (2015)

    Article  CAS  Google Scholar 

  11. 11.

    H. Wang, T. Maiyalagan, X. Wang, Review on recent progress in nitrogen-doped graphene: synthesis characterization, and its potential applications. ACS Catal. 2, 781–794 (2012)

    CAS  Article  Google Scholar 

  12. 12.

    R. Mo, Z. Lei, K. Sun, D. Rooney, Facile synthesis of anatase TiO(2) quantum-dot/graphene-nanosheet composites with enhanced electrochemical performance for lithium-ion batteries. Adv. Mater. 26, 2084–2088 (2014)

    CAS  Article  Google Scholar 

  13. 13.

    Z. Zhang, F. Xiao, Y. Guo, S. Wang, Y. Liu, One-pot self-assembled three-dimensional TiO2-graphene hydrogel with improved adsorption capacities and photocatalytic and electrochemical activities. ACS Appl. Mater. Interfaces. 5, 2227–2233 (2013)

    CAS  Article  Google Scholar 

  14. 14.

    Y. Jiao, C. Wan, W. Bao, H. Gao, D. Liang, J. Li, Facile hydrothermal synthesis of Fe3O4@cellulose aerogel nanocomposite and its application in Fenton-like degradation of Rhodamine B. Carbohydr. Polym. 189, 371–378 (2018)

    CAS  Article  Google Scholar 

  15. 15.

    A. Arshad, J. Iqbal, Q. Mansoor, Graphene/Fe3O4 nanocomposite: solar light driven Fenton like reaction for decontamination of water and inhibition of bacterial growth. Appl. Surf. Sci. 474, 57–65 (2019)

    CAS  Article  Google Scholar 

  16. 16.

    Z.J. Li, Z.W. Huang, W.L. Guo, L. Wang, L.R. Zheng, Z.F. Chai, W.Q. Shi, Enhanced photocatalytic removal of uranium(VI) from aqueous solution by magnetic TiO2/Fe3O4 and its graphene composite. Environ. Sci. Technol. 51, 5666–5674 (2017)

    CAS  Article  Google Scholar 

  17. 17.

    J. Zhan, H. Zhang, G. Zhu, Magnetic photocatalysts of cenospheres coated with Fe3O4/TiO2 core/shell nanoparticles decorated with Ag nanopartilces. Ceram. Int. 40, 8547–8559 (2014)

    CAS  Article  Google Scholar 

  18. 18.

    H. Fan, G. Yi, X. Zhang, B. Xing, C. Zhang, L. Chen, Y. Zhang, Facile synthesis of uniformly loaded Fe3O4–TiO2/RGO ternary hybrids for enhanced photocatalytic activities. Opt. Mater. 111, 110582 (2021)

    CAS  Article  Google Scholar 

  19. 19.

    X. Yang, W. Chen, J. Huang, Y. Zhou, Y. Zhu, C. Li, Rapid degradation of methylene blue in a novel heterogeneous Fe3O4 @rGO@TiO2-catalyzed photo-Fenton system. Sci. Rep. 5, 10632 (2015)

    Article  Google Scholar 

  20. 20.

    M. Nadimi, A.Z. Saravani, M.A. Aroon, A.E. Pirbazari, Photodegradation of methylene blue by a ternary magnetic TiO2/Fe3O4/graphene oxide nanocomposite under visible light. Mater. Chem. Phys. 225, 464–474 (2019)

    CAS  Article  Google Scholar 

  21. 21.

    Y. Yu, L. Yan, J. Cheng, C. Jing, Mechanistic insights into TiO2 thickness in Fe3O4 @TiO2 -GO composites for enrofloxacin photodegradation. Chem. Eng. J. 325, 647–654 (2017)

    CAS  Article  Google Scholar 

  22. 22.

    Y. Rao, Y. Zhang, A. Li, T. Zhang, T. Jiao, Photocatalytic activity of G-TiO2@Fe3O4 with persulfate for degradation of alizarin red S under visible light. Chemosphere 266, 129236 (2021).

  23. 23.

    F. Zhang, X. Xue, X. Huang, H. Yang, Adsorption and heterogeneous Fenton catalytic performance for magnetic Fe3O4/reduced graphene oxide aerogel. J. Mater. Sci. 55, 15695–15708 (2020)

    CAS  Article  Google Scholar 

  24. 24.

    X. Zhang, Y. Zhang, Z. Yu, X. Wei, W.D. Wu, X. Wang, Z. Wu, Facile synthesis of mesoporous anatase/rutile/hematite triple heterojunctions for superior heterogeneous photo-Fenton catalysis. Appl. Catal. B 263, 118335 (2020)

    CAS  Article  Google Scholar 

  25. 25.

    L. Cheng, S. Zhang, Y. Wang, G. Ding, Z. Jiao, Ternary P25–graphene–Fe3O4 nanocomposite as a magnetically recyclable hybrid for photodegradation of dyes. Mater. Res. Bull. 73, 77–83 (2016)

    CAS  Article  Google Scholar 

  26. 26.

    L. Ren, S. Huang, W. Fan, T. Liu, One-step preparation of hierarchical superparamagnetic iron oxide/graphene composites via hydrothermal method. Appl. Surf. Sci. 258, 1132–1138 (2011)

    CAS  Article  Google Scholar 

  27. 27.

    H. Liu, M. Jia, Q. Zhu, B. Cao, R. Chen, Y. Wang, F. Wu, B. Xu, 3D–0D graphene-Fe3O4 quantum dot hybrids as high-performance anode materials for sodium-ion batteries. ACS Appl. Mater. Interfaces 8, 26878–26885 (2016)

    CAS  Article  Google Scholar 

  28. 28.

    C. Sun, S.-T. Yang, Z. Gao, S. Yang, A. Yilihamu, Q. Ma, R.-S. Zhao, F. Xue, Fe3O4/TiO2/reduced graphene oxide composites as highly efficient Fenton-like catalyst for the decoloration of methylene blue. Mater. Chem. Phys. 223, 751–757 (2019)

    CAS  Article  Google Scholar 

  29. 29.

    V.M. Vinosel, S. Anand, M.A. Janifer, S. Pauline, S. Dhanavel, P. Praveena, A. Stephen, Preparation and performance of Fe3O4/TiO2 nanocomposite with enhanced photo-Fenton activity for photocatalysis by facile hydrothermal method. Appl. Phys. A 125 (2019).

  30. 30.

    B. Qiu, Q. Li, B. Shen, M. Xing, J. Zhang, Stöber-like method to synthesize ultradispersed Fe3O4 nanoparticles on graphene with excellent Photo-Fenton reaction and high-performance lithium storage. Appl. Catal. B 183, 216–223 (2016)

    CAS  Article  Google Scholar 

  31. 31.

    P.K. Boruah, B. Sharma, I. Karbhal, M.V. Shelke, M.R. Das, Ammonia-modified graphene sheets decorated with magnetic Fe3O4 nanoparticles for the photocatalytic and photo-Fenton degradation of phenolic compounds under sunlight irradiation. J. Hazard. Mater. 325, 90–100 (2017)

    CAS  Article  Google Scholar 

  32. 32.

    M. Zong, Y. Huang, Y. Zhao, X. Sun, C. Qu, D. Luo, J. Zheng, Facile preparation, high microwave absorption and microwave absorbing mechanism of RGO–Fe3O4 composites. RSC Adv. 3, 23638 (2013)

    CAS  Article  Google Scholar 

  33. 33.

    J. Ma, S. Guo, X. Guo, H. Ge, A mild synthetic route to Fe3O4@TiO2-Au composites: preparation, characterization and photocatalytic activity. Appl. Surf. Sci. 353, 1117–1125 (2015)

    CAS  Article  Google Scholar 

  34. 34.

    Y. Liu, J.F. Wan, C.T. Liu, Y.B. Li, Fabrication of magnetic Fe3O4/C/TiO2composites with nanotube structure and enhanced photocatalytic activity. Mater. Sci. Technol. 32, 786–793 (2016)

    CAS  Article  Google Scholar 

  35. 35.

    F. Zhang, B. Xu, G. Cao, M. Chu, N. Qiao, G. Wei, Y. Yang, Nano/micro structured porous Li4Ti5O12 synthesized by a polyethylene glycol assisted hydrothermal method for high rate lithium-ion batteries. RSC Adv. 4, 53981–53986 (2014)

    CAS  Article  Google Scholar 

  36. 36.

    P. Zhang, Z. Mo, Y. Wang, L. Han, C. Zhang, G. Zhao, Z. Li, One-step hydrothermal synthesis of magnetic responsive TiO2nanotubes/Fe3O4/graphene composites with desirable photocatalytic properties and reusability. RSC Adv. 6, 39348–39355 (2016)

    CAS  Article  Google Scholar 

  37. 37.

    Y. Wang, H. Sun, H.M. Ang, M.O. Tadé, S. Wang, Magnetic Fe3O4/carbon sphere/cobalt composites for catalytic oxidation of phenol solutions with sulfate radicals. Chem. Eng. J. 245, 1–9 (2014)

    CAS  Article  Google Scholar 

  38. 38.

    Y. Yao, S. Miao, S. Liu, L.P. Ma, H. Sun, S. Wang, Synthesis, characterization, and adsorption properties of magnetic Fe3O4@graphene nanocomposite. Chem. Eng. J. 184, 326–332 (2012)

    CAS  Article  Google Scholar 

  39. 39.

    L. Ai, J. Jiang, Removal of methylene blue from aqueous solution with self-assembled cylindrical graphene–carbon nanotube hybrid. Chem. Eng. J. 192, 156–163 (2012)

    CAS  Article  Google Scholar 

  40. 40.

    L. Ai, C. Zhang, Z. Chen, Removal of methylene blue from aqueous solution by a solvothermal-synthesized graphene/magnetite composite. J. Hazard. Mater. 192, 1515–1524 (2011)

    CAS  Article  Google Scholar 

  41. 41.

    Z.-Q. Li, H.-L. Wang, L.-Y. Zi, J.-J. Zhang, Y.-S. Zhang, Preparation and photocatalytic performance of magnetic TiO2–Fe3O4/graphene (RGO) composites under VIS-light irradiation. Ceram. Int. 41, 10634–10643 (2015)

    CAS  Article  Google Scholar 

  42. 42.

    X. Li, M. Cui, Y. Lee, J. Choi, J. Khim, Application of pea-like yolk–shell structured Fe3O4@TiO2 nanosheets for photocatalytic and photo-Fenton oxidation of bisphenol-A. RSC Adv. 9, 22153–22160 (2019)

    CAS  Article  Google Scholar 

  43. 43.

    F. Ning, M. Shao, S. Xu, Y. Fu, R. Zhang, M. Wei, D.G. Evans, X. Duan, TiO2/graphene/NiFe-layered double hydroxide nanorod array photoanodes for efficient photoelectrochemical water splitting. Energy Environ. Sci. 9, 2633–2643 (2016)

    CAS  Article  Google Scholar 

  44. 44.

    S. Banerjee, P. Benjwal, M. Singh, K.K. Kar, Graphene oxide (rGO)-metal oxide (TiO2/Fe3O4) based nanocomposites for the removal of methylene blue. Appl. Surf. Sci. 439, 560–568 (2018)

    CAS  Article  Google Scholar 

  45. 45.

    W. Wang, K. Xiao, L. Zhu, Y. Yin, Z. Wang, Graphene oxide supported titanium dioxide & ferroferric oxide hybrid, a magnetically separable photocatalyst with enhanced photocatalytic activity for tetracycline hydrochloride degradation. RSC Adv. 7, 21287–21297 (2017)

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiangxin Xue.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4961 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Xue, X., Huang, X. et al. Magnetic TiO2@Fe3O4/reduced graphene oxide nanocomposites with enhanced photocatalytic activities. MRS Communications (2021). https://doi.org/10.1557/s43579-021-00052-w

Download citation

Keywords

  • Nanostructure
  • Graphene
  • Magnetic
  • Absorbent
  • Photochemical
  • Environmentally protective