Ab-initio prediction of temperature-dependent dielectric constants and curie temperatures of cubic phase perovskite materials

Abstract

Lattice anharmonicity is the essential ingredient for the description of the temperature-dependent dielectric response. Herein, using self-consistent phonon theory calculations that consider the lattice anharmonicity, we examined computational workflow to calculate dielectric permittivity. For this purpose, we selected the high symmetry cubic phase of SrTiO3, BaTiO3, PbTiO3, and KNbO3. It turns out that it is necessary to choose an appropriate set of a displacement–force dataset and the cutoff distance for quartic interatomic force constants. We were also able to predict Curie temperatures out of temperature-dependent dielectric constants of ferroelectric materials.

Graphic abstract

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3

References

  1. 1.

    X. Gonze, C. Lee, Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys. Rev. B 55, 10355–10368 (1997). https://doi.org/10.1103/PhysRevB.55.10355

    CAS  Article  Google Scholar 

  2. 2.

    L. Kim, J. Kim, D. Jung, J. Lee, Strain effect on dielectric property of SrTiO3 lattice: First-principles study. Thin Solid Films (2005). https://doi.org/10.1016/j.tsf.2004.07.025

    Article  Google Scholar 

  3. 3.

    R.C. Neville, B. Hoeneisen, C.A. Mead, Permittivity of strontium titanate. J. Appl. Phys. 43, 2124–2131 (1972). https://doi.org/10.1063/1.1661463

    CAS  Article  Google Scholar 

  4. 4.

    A. Carreras, A. Togo, I. Tanaka, DynaPhoPy: A code for extracting phonon quasiparticles from molecular dynamics simulations. Comput. Phys. Commun. 221, 221–234 (2017). https://doi.org/10.1016/j.cpc.2017.08.017

    CAS  Article  Google Scholar 

  5. 5.

    F. Zhou, W. Nielson, Y. Xia, V. Ozoliņš, Lattice anharmonicity and thermal conductivity from compressive sensing of first-principles calculations. Phys. Rev. Lett. (2014). https://doi.org/10.1103/PhysRevLett.113.185501

    Article  Google Scholar 

  6. 6.

    Q. Zhong, Z. Dai, W. Wang, Y. Zhao, S. Meng, Quartic anharmonicity and ultra-low lattice thermal conductivity of alkali antimonide compounds M3Sb (M = K, Rb and Cs). Int. J. Energy Res. (2020). https://doi.org/10.1002/er.6284

    Article  Google Scholar 

  7. 7.

    Y. Zhao, C. Lian, S. Zeng, Z. Dai, S. Meng, J. Ni, Quartic anharmonicity and anomalous thermal conductivity in cubic antiperovskites A3B O (A = K, Rb; B = Br, Au) quartic anharmonicity and anomalous thermal Zhao, Lian, Zeng, Dai, Meng, and Ni. Phys. Rev. B (2020). https://doi.org/10.1103/PhysRevB.101.184303

    Article  Google Scholar 

  8. 8.

    O. Hellman, P. Steneteg, I.A. Abrikosov, S.I. Simak, Temperature dependent effective potential method for accurate free energy calculations of solids. Phys. Rev. B (2013). https://doi.org/10.1103/PhysRevB.87.104111

    Article  Google Scholar 

  9. 9.

    J.-J. Zhou, O. Hellman, M. Bernardi, Electron-phonon scattering in the presence of soft modes and electron mobility in SrTiO3 perovskite from first principles. Phys. Rev. Lett. 121, 226603 (2018). https://doi.org/10.1103/PhysRevLett.121.226603

    CAS  Article  Google Scholar 

  10. 10.

    N.R. Werthamer, Self-consistent phonon formulation of anharmonic lattice dynamics. Phys. Rev. B (1970). https://doi.org/10.1103/PhysRevB.1.572

    Article  Google Scholar 

  11. 11.

    T. Tadano, S. Tsuneyuki, Self-consistent phonon calculations of lattice dynamical properties in cubic SrTiO3 with first-principles anharmonic force constants. Phys. Rev. B 92, 054301 (2015). https://doi.org/10.1103/PhysRevB.92.054301

    CAS  Article  Google Scholar 

  12. 12.

    T. Tadano, S. Tsuneyuki, First-principles lattice dynamics method for strongly anharmonic crystals. J. Phys. Soc. Jpn. (2018). https://doi.org/10.7566/JPSJ.87.041015

    Article  Google Scholar 

  13. 13.

    T. Tadano, Y. Gohda, S. Tsuneyuki, Anharmonic force constants extracted from first-principles molecular dynamics: Applications to heat transfer simulations. J. Phys. Condens. Matter (2014). https://doi.org/10.1088/0953-8984/26/22/225402

    Article  Google Scholar 

  14. 14.

    D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999). https://doi.org/10.1103/PhysRevB.59.1758

    Article  Google Scholar 

  15. 15.

    S. Schmidt, J. Lu, S.P. Keane, L.D. Bregante, D.O. Klenov, S. Stemmer, Microstructure and dielectric properties of textured SrTiO3 thin films. J. Am. Ceram. Soc. 88, 789–801 (2005). https://doi.org/10.1111/j.1551-2916.2005.00195.x

    CAS  Article  Google Scholar 

  16. 16.

    G.M. Dongho Nguimdo, D.P. Joubert, A density functional (PBE, PBEsol, HSE06) study of the structural, electronic and optical properties of the ternary compounds AgAlX2 (X = S, Se, Te). Eur. Phys. J. B (2015). https://doi.org/10.1140/epjb/e2015-50478-x

    Article  Google Scholar 

  17. 17.

    J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008). https://doi.org/10.1103/PhysRevLett.100.136406

    CAS  Article  Google Scholar 

  18. 18.

    J. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    CAS  Article  Google Scholar 

  19. 19.

    R.H. Lyddane, R.G. Sachs, E. Teller, On the polar vibrations of alkali halides. Phys. Rev. (1941). https://doi.org/10.1103/PhysRev.59.673

    Article  Google Scholar 

  20. 20.

    T. Kurosawa, T. Kurosawa, Polarization waves in solids. J. Phys. Soc. Jpn. 16, 1298–1308 (1961). https://doi.org/10.1143/JPSJ.16.1298

    CAS  Article  Google Scholar 

  21. 21.

    W. Cochran, R.A. Cowley, Dielectric constants and lattice vibrations. J. Phys. Chem. Solids 23, 447–450 (1962). https://doi.org/10.1016/0022-3697(62)90084-7

    CAS  Article  Google Scholar 

  22. 22.

    A.A. Sirenko, C. Bernhard, A. Golnik, A.M. Clark, J. Hao, W. Si, X.X. Xi, Soft-mode hardening in SrTiO3 thin films. Nature 404, 373–376 (2000). https://doi.org/10.1038/35006023

    CAS  Article  Google Scholar 

  23. 23.

    J.L. Servoin, Y. Luspin, F. Gervais, Infrared dispersion in SrTiO3 at high temperature. Phys. Rev. B 22, 5501–5506 (1980). https://doi.org/10.1103/PhysRevB.22.5501

    CAS  Article  Google Scholar 

  24. 24.

    K.A. Müller, H. Burkard, SrTiO3: An intrinsic quantum paraelectric below 4 K. Phys. Rev. B 19, 3593–3602 (1979). https://doi.org/10.1103/PhysRevB.19.3593

    Article  Google Scholar 

  25. 25.

    J.H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y.L. Li, S. Choudhury, W. Tian, M.E. Hawley, B. Craigo, A.K. Tagantsev, X.Q. Pan, S.K. Streiffer, L.Q. Chen, S.W. Kirchoefer, J. Levy, D.G. Schlom, Room-temperature ferroelectricity in strained SrTiO3. Nature 430, 758–761 (2004). https://doi.org/10.1038/nature02773

    CAS  Article  Google Scholar 

  26. 26.

    R. Xu, J. Huang, E.S. Barnard, S.S. Hong, P. Singh, E.K. Wong, T. Jansen, V. Harbola, J. Xiao, B.Y. Wang, S. Crossley, D. Lu, S. Liu, H.Y. Hwang, Strain-induced room-temperature ferroelectricity in SrTiO3 membranes. Nat. Commun. (2020). https://doi.org/10.1038/s41467-020-16912-3

    Article  Google Scholar 

  27. 27.

    M. Acosta, N. Novak, V. Rojas, S. Patel, R. Vaish, J. Koruza, G.A. Rossetti, J. Rödel, BaTiO3-based piezoelectrics: fundamentals, current status, and perspectives. Appl. Phys. Rev. (2017). https://doi.org/10.1063/1.4990046

    Article  Google Scholar 

  28. 28.

    G. Shirane, S. Hoshino, K. Suzuki, X-ray study of the phase transition in lead titanate [13]. Phys. Rev. (1950). https://doi.org/10.1103/PhysRev.80.1105

    Article  Google Scholar 

  29. 29.

    L. Liang, Y.L. Li, L.Q. Chen, S.Y. Hu, G.H. Lu, Thermodynamics and ferroelectric properties of KNbO3. J. Appl. Phys. (2009). https://doi.org/10.1063/1.3260242

    Article  Google Scholar 

  30. 30.

    G. Shirane, R. Newnham, R. Pepinsky, Dielectric properties and phase transitions of NaNbO3 and (Na, K)NbO3. Phys. Rev. (1954). https://doi.org/10.1103/PhysRev.96.581

    Article  Google Scholar 

Download references

Acknowledgments

WIC would like to thank Terumasa Tadano (NIMS, Japan) for the fruitful discussion.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Woon Ih Choi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (TIF 1379 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Choi, W.I., Yang, D.J., Jung, D.W. et al. Ab-initio prediction of temperature-dependent dielectric constants and curie temperatures of cubic phase perovskite materials. MRS Communications (2021). https://doi.org/10.1557/s43579-021-00051-x

Download citation

Keywords

  • Dielectric permittivities
  • Ferroelectric
  • Perovskites
  • Density functional theory (DFT)
  • Phase transformation