Indium gallium nitride on silicon heterojunction Schottky barrier solar cell characteristics

Abstract

We present calculations of performance characteristics of Indium Gallium Nitride-Silicon Heterojunction Schottky barrier solar cells. The effect of growth axis and spontaneous and piezoelectric effects in the Indium Gallium Nitride are taken into account. We consider both wurtzite Indium Gallium Nitride layers on 111 silicon and cubic indium gallium nitride layers on 100 silicon. The short-circuit current as a function of depletion-layer thickness is studied along with the effect of Indium Gallium Nitride composition on the dark current. We consider the effect of composition grading on solar cell characteristics. Greater than 20% power conversion efficiency is achievable with a simple quasi-unipolar design.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. 1.

    G.F. Brown, J.W. Ager III., W. Walekiewicz, J. Wu, Finite element simulations of compositionally graded InGaN solar cells. Sol. Energy Mater. Sol. Cells 94, 478–483 (2010)

    CAS  Article  Google Scholar 

  2. 2.

    J.J. Wierer, A.J. Fischer, D.D. Kolescke, The impact of piezoelectric polarization and non-radiative recombination on the performance of (0001) face GaN/InGaN photovoltaic devices. Appl. Phys. Lett. 96, 051107 (2010)

    Article  Google Scholar 

  3. 3.

    X. Hunag et al., Nonpolar and semipolar InGaN/GaN multiple quantum well solar cells with improved carrier collection efficiency. Appl. Phys. Lett. 110, 161105 (2017)

    Article  Google Scholar 

  4. 4.

    L. Redaeli et al., Effect of the barrier thickness on the performance of multiple quantum well InGaN photovoltaic cells. Jpn. J. Appl. Phys. 54, 072302 (2015)

    Article  Google Scholar 

  5. 5.

    C. Neufeld et al., High quantum efficiency InGaN/GaN solar cells with 2.95eV band gap. Appl. Phys. Lett. 93, 143502 (2008)

    Article  Google Scholar 

  6. 6.

    E. Matioli et al., High internal and external quantum efficiency InGaN/GaN solar cells. Appl. Phys. Lett. 98, 021102 (2011)

    Article  Google Scholar 

  7. 7.

    C.J. Praharaj, Optical absorption at digitally and continuously graded Indium Gallium Nitride Schottky barriers. Mater. Res. Soc. Symp. Proc. 1012, 457–462 (2007)

    CAS  Article  Google Scholar 

  8. 8.

    K.M.A. Saron et al., Leakage current reduction in n-GaN/p-Si (100) heterojunction solar cells. Appl. Phys. Lett. 118, 023902 (2021)

    CAS  Article  Google Scholar 

  9. 9.

    A. Khettou et al., Simulation and optimization of InGaN Schottky solar cells to enhance the interface quality. Superlatt. Microstruct. 142, 106539 (2020)

    CAS  Article  Google Scholar 

  10. 10.

    X. Ren et al., Analysis of a novel photovoltaic/thermal system using InGaN/GaN MQWs cells in high temperature applications. Renew. Energy 168, 11–20 (2021)

    CAS  Article  Google Scholar 

  11. 11.

    R. Cheriton et al., Two-photon photocurrent in InGaN/GaN nanowire intermediate band solar cells. Commun. Mater. 1, 63 (2020)

    Article  Google Scholar 

  12. 12.

    F. Bernardini, V. Fiorentini, Nonlinear behavior of spontaneous and piezoelectric polarization in III-V nitride alloys. Phys. Status Solidi 190, 65–73 (2002)

    CAS  Article  Google Scholar 

  13. 13.

    V. Fiorentini, F. Bernardini, O. Ambacher, Evidence for nonlinear macroscopic polarization in III-V nitride alloy heterostructures. Appl. Phys. Lett. 80, 1204 (2002)

    CAS  Article  Google Scholar 

  14. 14.

    T. Suki et al., Switching of exciton character in double InGaN/GaN quantum wells. Phys. Rev. B 98, 165302 (2018)

    Article  Google Scholar 

  15. 15.

    G. Callsen, R. Butte, N. Grandjean, Probing alloy formation using different excitonic species: the particular case of InGaN. Phys. Rev. X 9, 031030 (2019)

    CAS  Google Scholar 

  16. 16.

    E. Sakalaukas et al., Dielectric function and optical properties of quaternary AlInGaN alloys. J. Appl. Phys. 110, 013102 (2011)

    Article  Google Scholar 

  17. 17.

    A. Kasic, E. Valcheva, B. Monemar, H. Lu, W.J. Schaff, InN dielectric function from the mid infra-red to the ultraviolet range. Phys. Rev. B 70, 115217 (2004)

    Article  Google Scholar 

  18. 18.

    M. Feneberg et al., Optical properties of cubic GaN from 1 to 20 eV. Phys. Rev. B 85, 155207 (2012)

    Article  Google Scholar 

  19. 19.

    A.B. Djurisic, E.H. Li, Dielectric function models for describing the optical properties of hexagonal GaN. J. Appl. Phys. 89, 273 (2001)

    CAS  Article  Google Scholar 

  20. 20.

    S. Shokhovets et al., Determination of the anisotropic dielectric function for wurtzite AlN and GaN by spectroscopic ellipsometry. J. Appl. Phys. 94, 307 (2003)

    CAS  Article  Google Scholar 

  21. 21.

    S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 2007).

    Google Scholar 

Download references

Acknowledgments

This work was partly supported by DoE Grant DE-EE-0006318.

Author information

Affiliations

Authors

Corresponding author

Correspondence to C. Jayant Praharaj.

Ethics declarations

Conflict of interest

On behalf of all the authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Praharaj, C.J. Indium gallium nitride on silicon heterojunction Schottky barrier solar cell characteristics. MRS Communications (2021). https://doi.org/10.1557/s43579-021-00050-y

Download citation

Keywords

  • III-V
  • Si
  • Photovoltaic
  • Photonic
  • Electronic material