FeS2 encapsulated with mesoporous carbon for high-performance lithium-ion batteries


FeS2 is thought to be a kind of promising anode materials used for lithium-ion batteries (LIBs), but the intrinsic low electrical conductivity and remarkable volume change hinder its practical application. In the present work, we proposed a strategy by introducing mesoporous carbon (MPC) to obtain a FeS2/MPC composite electrode for LIBs. The FeS2/MPC composite was prepared by hydrothermal method. The results indicated that the FeS2/MPC composite electrode exhibited better electrochemical performance than pristine FeS2. Especially, the discharge capacity of composite electrode reached 650 mAh g−1 at 0.5 C current density, and this was significantly higher than that of pristine FeS2.

Graphic abstract

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4


  1. 1.

    L. Xu, Y. Hu, H. Zhang, H. Jiang, C. Li, Confined synthesis of FeS2 nanoparticles encapsulated in carbon nanotube hybrids for ultrastable lithium-ion batteries. ACS Sustain. Chem. Eng. 4, 4251–4255 (2018). https://doi.org/10.1021/acssuschemeng.6b00741

    CAS  Article  Google Scholar 

  2. 2.

    F. Zhang, C. Wang, G. Huang, D. Yin, L. Wang, FeS2@ C nanowires derived from organic-inorganic hybrid nanowires for high-rate and long-life lithium-ion batteries. J. Power Sources 328, 56–64 (2016). https://doi.org/10.1016/j.jpowsour.2016.07.117

    CAS  Article  Google Scholar 

  3. 3.

    Y. Liu, W. Wang, Q. Chen, C. Xu, D. Cai, H. Zhan, Resorcinol-formaldehyde resin-coated prussian blue core-shell spheres and their derived unique yolk-shell FeS2@ C spheres for lithium-ion batteries. Inorg. Chem. 58, 1330–1338 (2019). https://doi.org/10.1021/acs.inorgchem.8b02897

    CAS  Article  Google Scholar 

  4. 4.

    Z. Zhao, Z. Hu, R. Jiao, Z. Tang, P. Dong, Y. Li, Tailoring multi-layer architectured FeS2@ C hybrids for superior sodium-, potassium-and aluminum-ion storage. Energy Storage Mater. 22, 228–234 (2019). https://doi.org/10.1016/j.ensm.2019.01.022

    Article  Google Scholar 

  5. 5.

    G.X. Pan, F. Cao, X.H. Xia, Y.J. Zhang, Exploring hierarchical FeS2/C composite nanotubes arrays as advanced cathode for lithium ion batteries. J. Power Sources 332, 383–388 (2016). https://doi.org/10.1016/j.jpowsour.2016.09.126

    CAS  Article  Google Scholar 

  6. 6.

    Y. Zhao, J. Zhu, S. Jun, H. Ong, Q. Yao, X. Shi, K. Hou, L. Guan, High-rate and ultralong cycle-life potassium ion batteries enabled by in situ engineering of yolk-shell FeS2@ C structure on graphene matrix. Adv. Energy Mater. 8, 1802565 (2018). https://doi.org/10.1002/aenm.201802565

    CAS  Article  Google Scholar 

  7. 7.

    X. Xu, T. Cai, Z. Meng, H. Ying, Y. Xie, X. Zhu, W.-Q. Han, FeS2 nanocrystals prepared in hierarchical porous carbon for lithium-ion battery. J. Power Sources 331, 366–372 (2016). https://doi.org/10.1016/j.jpowsour.2016.09.015

    CAS  Article  Google Scholar 

  8. 8.

    Z. Lu, N. Wang, Y. Zhang, P. Xue, M. Guo, B. Tang, Z. Bai, S. Dou, Pyrite FeS2@ C nanorods as smart cathode for sodium ion battery with ultra-long lifespan and notable rate performance from tunable pseudocapacitance. Electrochim. Acta 260, 755–761 (2018). https://doi.org/10.1016/j.electacta.2017.12.031

    CAS  Article  Google Scholar 

  9. 9.

    Q. Su, Y. Lu, S. Liu, X. Zhang, Y. Lin, R. Fu, D. Wu, Nanonetwork-structured yolk-shell FeS2@ C as high-performance cathode materials for Li-ion batteries. Carbon 140, 433–440 (2018). https://doi.org/10.1016/j.carbon.2018.08.049

    CAS  Article  Google Scholar 

  10. 10.

    Q. Xu, J. Li, H. Xue, S. Guo, Effective combination of FeS2 microspheres and Fe3S4 microcubes with rGO as anode material for high-capacity and long-cycle lithium-ion batteries. J. Power Sources 396, 675–682 (2018). https://doi.org/10.1016/j.jpowsour.2018.06.088

    CAS  Article  Google Scholar 

  11. 11.

    X. Xu, H. Ying, S. Zhang, Z. Meng, X. Yan, W.-Q. Han, Biomass-derived 3D interconnected porous carbon-encapsulated nano-FeS2 for high-performance lithium-ion batteries. ACS Appl. Energy Mater. 3, 5589–5596 (2018). https://doi.org/10.1021/acsaem.0c00537

    CAS  Article  Google Scholar 

  12. 12.

    X. Shen, Z. Tian, R. Fan, L. Shao, D. Zhang, G. Cao, L. Kou, Y. Bai, Research progress on silicon/carbon composite anode materials for lithium-ion battery. J. Energy Chem. 27, 1067–1090 (2018). https://doi.org/10.1016/j.jechem.2017.12.012

    Article  Google Scholar 

  13. 13.

    C. Zhang, H. Song, C. Liu, Y. Liu, C. Zhang, X. Nan, G. Cao, Fast and reversible Li ion insertion in carbon-encapsulated Li3VO4 as anode for lithium-ion battery. Adv. Funct. Mater. 25, 2497–3504 (2015). https://doi.org/10.1002/adfm.201500644

    CAS  Article  Google Scholar 

  14. 14.

    J. Hwang, C. Jo, M.G. Kim, J. Chun, E. Lim, S. Kim, S. Jeong, Y. Kim, J. Lee, Mesoporous Ge/GeO2/carbon lithium-ion battery anodes with high capacity and high reversibility. ACS Nano 9, 5299–5309 (2015). https://doi.org/10.1021/acsnano.5b00817

    CAS  Article  Google Scholar 

  15. 15.

    H. Liu, W. Li, D. Shen, D. Zhao, G. Wang, Graphitic carbon conformal coating of mesoporous TiO2 hollow spheres for high-performance lithium-ion battery anodes. J. Am. Chem. Soc. 137, 13161–13166 (2015). https://doi.org/10.1021/jacs.5b08743

    CAS  Article  Google Scholar 

  16. 16.

    K. Feng, W. Ahn, G. Lui, H.W. Park, A.G. Kashkooli, G. Jiang, X. Wang, X. Xiao, Z. Chen, Implementing an in situ carbon network in Si/reduced graphene oxide for high performance lithium ion battery anodes. Nano Energy 19, 187–197 (2016). https://doi.org/10.1016/j.nanoen.2015.10.025

    CAS  Article  Google Scholar 

  17. 17.

    H. Liu, L. Shi, D. Li, J. Yu, H.-M. Zhang, S. Ullah, B. Yang, C. Li, C. Zhu, J. Xu, Rational design of hierarchical ZnO@ Carbon nanoflower for high performance lithium ion battery anodes. J. Power Sources 387, 64–71 (2018). https://doi.org/10.1016/j.jpowsour.2018.03.047

    CAS  Article  Google Scholar 

  18. 18.

    Z. Li, Q. He, L. He, P. Hu, W. Li, H. Yan, X. Peng, C. Huang, L. Mai, Self-sacrificed synthesis of carbon-coated SiOx nanowires for high capacity lithium ion battery anodes. J. Mater. Chem. A 5, 4183–4189 (2017). https://doi.org/10.1039/C6TA10583A

    CAS  Article  Google Scholar 

  19. 19.

    X. Zhang, R. Zhao, Q. Wu, W. Li, C. Shen, L. Ni, H. Yan, G. Diao, M. Chen, Petal-like MoS2 nanosheets space-confined in hollow mesoporous carbon spheres for enhanced lithium storage performance. ACS Nano 11, 8429–8436 (2017). https://doi.org/10.1021/acsnano.7b04078

    CAS  Article  Google Scholar 

  20. 20.

    J. Xie, B.-Q. Li, H.-J. Peng, Y.-W. Song, M. Zhao, X. Chen, Q. Zhang, J.-Q. Huang, Implanting atomic cobalt within mesoporous carbon toward highly stable lithium–sulfur batteries. Adv. Mater. 31, 1903813 (2019). https://doi.org/10.1002/adma.201903813

    CAS  Article  Google Scholar 

  21. 21.

    G.-H. An, H. Kim, H.-J. Ahn, Improved ionic diffusion through the mesoporous carbon skin on silicon nanoparticles embedded in carbon for ultrafast lithium storage. ACS Appl. Mater. Interfaces. 10, 6235–6244 (2018). https://doi.org/10.1021/acsami.7b15950

    CAS  Article  Google Scholar 

  22. 22.

    J. Wang, Y. Xia, Y. Liu, W. Li, D. Zhao, Mass production of large-pore phosphorus-doped mesoporous carbon for fast-rechargeable lithium-ion batteries. Energy Storage Mater. 22, 147–153 (2019). https://doi.org/10.1016/j.ensm.2019.01.008

    Article  Google Scholar 

  23. 23.

    S. Prakash, C. Zhang, J.-D. Park, F. Razmjooei, J.-S. Yu, Silicon core-mesoporous shell carbon spheres as high stability lithium-ion battery anode. J. Colloid Interface Sci. 534, 47–54 (2019). https://doi.org/10.1016/j.jcis.2018.09.004

    CAS  Article  Google Scholar 

  24. 24.

    T. Kesavan, T. Partheeban, M. Vivekanantha, N. Prabu, M. Kundu, P. Selvarajan, S. Umapathy, A. Vinu, M. Sasidharan, Design of P-doped mesoporous carbon nitrides as high-performance anode materials for Li-ion battery. ACS Appl. Mater. Interfaces. 12, 24007–24018 (2020). https://doi.org/10.1021/acsami.0c05123

    CAS  Article  Google Scholar 

  25. 25.

    L. Wang, C. Yang, S. Dou, S. Wang, J. Zhang, X. Gao, J. Ma, Y. Yu, Nitrogen-doped hierarchically porous carbon networks: synthesis and applications in lithium-ion battery, sodium-ion battery and zinc-air battery. Electrochim. Acta 219, 592–603 (2016). https://doi.org/10.1016/j.electacta.2016.10.050

    CAS  Article  Google Scholar 

  26. 26.

    J. Li, D. Yan, T. Lu, Y. Yao, L. Pan, An advanced CoSe embedded within porous carbon polyhedra hybrid for high performance lithium-ion and sodium-ion batteries. Chem. Eng. J. 325, 14–24 (2017). https://doi.org/10.1016/j.cej.2017.05.046

    CAS  Article  Google Scholar 

  27. 27.

    M.-S. Baloguna, W. Qiu, F. Lyu, Y. Luo, H. Meng, J. Li, W. Mai, L. Mai, Y. Tong, All-flexible lithium ion battery based on thermally-etched porous carbon cloth anode and cathode. Nano Energy 26, 446–455 (2016). https://doi.org/10.1016/j.nanoen.2016.05.017

    CAS  Article  Google Scholar 

  28. 28.

    H. Liu, X. Liu, W. Li, X. Guo, Y. Wang, G. Wang, D. Zhao, Porous carbon composites for next generation rechargeable lithium batteries. Adv. Energy Mater. 7, 1700283 (2017). https://doi.org/10.1002/aenm.201700283

    CAS  Article  Google Scholar 

  29. 29.

    Z. Li, C. Wang, X. Chen, X. Wang, X. Li, Y. Yamauchi, X. Xue, J. Wang, C. Lin, D. Luo, X. Wang, X. Zhao, MoOx nanoparticles anchored on N-doped porous carbon as Li-ion battery electrode. Chem. Eng. J. 381, 122588 (2020). https://doi.org/10.1016/j.cej.2019.122588

    CAS  Article  Google Scholar 

  30. 30.

    X. Sun, J. Gao, C. Wang, X. Gao, J. Liu, N. Gao, H. Li, Y. Wang, K. Yu, A hybrid ZnO/Si/porous-carbon anode for high performance lithium ion battery. Chem. Eng. J. 383, 123198 (2020). https://doi.org/10.1016/j.cej.2019.123198

    CAS  Article  Google Scholar 

  31. 31.

    S. Lu, T. Zhu, Z. Li, Y. Pang, L. Shi, S. Ding, G. Gao, Ordered mesoporous carbon supported Ni3V2O8 composites for lithium-ion batteries with long-term and high-rate performance. J. Mater. Chem. A 6, 7005–7013 (2018). https://doi.org/10.1039/C7TA11268H

    CAS  Article  Google Scholar 

  32. 32.

    P. Xue, Y. Zhai, N. Wang, Y. Zhang, Z. Lu, Y. Liu, Z. Bai, B. Han, G. Zou, S. Dou, Selenium@ Hollow mesoporous carbon composites for high-rate and long-cycling lithium/sodium-ion batteries. Chem. Eng. J. 392, 123676 (2020). https://doi.org/10.1016/j.cej.2019.123676

    CAS  Article  Google Scholar 

  33. 33.

    G. Zhang, Z. Hao, J. Yin, C. Wang, J. Zhang, Z. Zhao, D. Wei, H. Zhou, Z. Li, FeS2 crystal lattice promotes the nanostructure and enhances the electrocatalytic performance of WS2 nanosheets for the oxygen evolution reaction. Dalton Trans. 49, 9804–9810 (2020). https://doi.org/10.1039/D0DT01660H

    CAS  Article  Google Scholar 

  34. 34.

    X. Zhang, C. Wang, P. Yang, X. Zhang, W. Chen, J. Liu, Y. Cui, X. Liu, X. Li, Mechanism and kinetics characteristic of self-discharge of FeS2 cathodes for thermal batteries. Phys. Chem. Chem. Phys. 23, 196–203 (2021). https://doi.org/10.1039/d0cp04576d

    CAS  Article  Google Scholar 

  35. 35.

    Q. Xu, H. Xue, FeS2 walnut-like microspheres wrapped with rGO as anode material for high-capacity and long-cycle lithium-ion batteries. Electrochim. Acta 292, 1–9 (2018). https://doi.org/10.1016/j.electacta.2018.09.135

    CAS  Article  Google Scholar 

  36. 36.

    H. Fan, H. Li, K. Huang, C. Fan, X. Zhang, X. Wu, J. Zhang, Metastable marcasite-FeS2 as a new anode material for lithium ion batteries: CNFs-improved lithiation/delithiation reversibility and Li-storage properties. ACS Appl. Mater. Interfaces. 9, 10708–10716 (2017). https://doi.org/10.1021/acsami.7b00578

    CAS  Article  Google Scholar 

Download references


This work was partly supported by the National Natural Science Foundation of China (NO. 51802258), project funded by the China Postdoctoral Science Foundation (NO.2020T130525), Shaanxi Province Postdoctoral Science Foundation (NO.2018BSHEDZZ113), the National Natural Science Foundation of China (No. 51771145), ISF-NSFC Joint Research Program (No. 51961145305), and Shaanxi Natural Science Basic Research Plan, China (No. 2020JM-464).

Author information



Corresponding authors

Correspondence to Heguang Liu or Caiyin You.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Supplementary Information

Below is the link to the electronic supplementary material.


Supplementary material 1 (DOCX 1563 kb) Supplementary Material Available: [The microstructure and morphology of as-prepared MPC sample is presented in Figure S1.].

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Jing, R., Wang, Z. et al. FeS2 encapsulated with mesoporous carbon for high-performance lithium-ion batteries. MRS Communications (2021). https://doi.org/10.1557/s43579-021-00048-6

Download citation


  • Composite
  • Energy storage
  • Microstructure
  • Morphology