Self-healing hydrogel electrodes from ingestible materials


Mechanically robust self-healing conducting hydrogel offer new possibilities to further the state of the art of ingestible (edible) device research. Here, we report self-healing hydrogel electrodes based on readily available ingestible materials sourced from supermarkets. We used an interpenetrating polymer network hydrogel consisting of sodium tetraborate-crosslinked poly(vinyl acetate) and food-grade gelatin that exhibited synergistic strengthening enabling it to withstand the stresses similar to those experienced in the gastrointestinal tract. The edible gels achieved full self-healing within 1 min (electrical conductivity 8.8 ± 0.8 mS/cm) and 1 h (tensile strength 60 ± 5 kPa), respectively, of reconnection of two severed halves.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3

Data availability

On behalf of all authors, the corresponding author states that data will be made available upon request.


  1. 1.

    M. Johncilla, R.K. Yantiss, Malformations, choristomas, and hamartomas of the gastrointestinal tract and pancreas. Semin. Diagn. Pathol. 36, 24–38 (2019)

    Article  Google Scholar 

  2. 2.

    W. Januszewicz, M. di Pietro, Novel gastrointestinal procedures. Medicine (Baltimore) 47, 448–453 (2019)

    Article  Google Scholar 

  3. 3.

    H.A. Kwak, J. Hart, The many faces of medication-related injury in the gastrointestinal tract. Surg. Pathol. Clin. 10, 887–908 (2017)

    Article  Google Scholar 

  4. 4.

    K. Zhao, G. Yan, L. Lu, F. Xu, Low-power wireless electronic capsule for long-term gastrointestinal monitoring. J. Med. Syst. 39, 1–11 (2015)

    Article  Google Scholar 

  5. 5.

    F. Xu, G. Yan, Z. Wang, P. Jiang, Continuous accurate pH measurements of human GI tract using a digital pH-ISFET sensor inside a wireless capsule. Measurement 64, 49–56 (2015)

    Article  Google Scholar 

  6. 6.

    C.K. Sorrell, S. Rajan, T.N. Lunsford, Role of capsule endoscopy and device-assisted enteroscopy in the management of patients hospitalized with gastrointestinal bleeding. Hosp. Med. Clin. 2, 72–90 (2013)

    Article  Google Scholar 

  7. 7.

    J.A. Rogers. Bio-integrated electronics. Electron Devices Meeting (IEDM), 2012 IEEE International 1.1.1–1.1.4 (2012).

  8. 8.

    Y.J. Kim, W. Wu, S.E. Chun, J.F. Whitacre, C.J. Bettinger, Biologically derived melanin electrodes in aqueous sodium-ion energy storage devices. Proc. Natl. Acad. Sci. USA. 110, 20912–20917 (2013)

    CAS  Article  Google Scholar 

  9. 9.

    Y.J. Kim, S.E. Chun, J. Whitacre, C.J. Bettinger, Self-deployable current sources fabricated from edible materials. J. Mater. Chem. B 1, 3781–3788 (2013)

    CAS  Article  Google Scholar 

  10. 10.

    A. Keller, H. Warren, M. In het Panhuis, Development of a facile one-pot synthesis method for an ingestible pH sensitive actuator. MRS Adv. (2019).

    Article  Google Scholar 

  11. 11.

    W. Wang, R. Narain, H. Zeng, Rational design of self-healing tough hydrogels: a mini review. Front. Chem. 6, 497 (2018)

    CAS  Article  Google Scholar 

  12. 12.

    Z. Deng, H. Wang, P.X. Ma, B. Guo, Self-healing conductive hydrogels: preparation, properties and applications. Nanoscale 12, 1224–1246 (2020)

    CAS  Article  Google Scholar 

  13. 13.

    S.L. Banerjee, S. Das, K. Bhattacharya, M. Kundu, M. Mandal, N.K. Singha, Ag NPs incorporated self-healable thermoresponsive hydrogel using precise “Interlocking” complex of polyelectrolyte BCPs: a potential new wound healing material. Chem. Eng. J. 405, 126436 (2021)

    CAS  Article  Google Scholar 

  14. 14.

    D.L. Taylor, M. In het Panhuis, Self-healing hydrogels. Adv. Mater. 28, 9060–9093 (2016)

    CAS  Article  Google Scholar 

  15. 15.

    Q. Li, D.G. Barrett, P.B. Messersmith, N. Holten-Andersen, Controlling hydrogel mechanics via bio-inspired polymer-nanoparticle bond dynamics. ACS Nano 10, 1317–1324 (2016)

    CAS  Article  Google Scholar 

  16. 16.

    S.L. Banerjee, N.K. Singha, A new class of dual responsive self-healable hydrogels based on a core crosslinked ionic block copolymer micelle prepared via RAFT polymerization and Diels-Alder “click” chemistry. Soft Matter 13, 9024–9035 (2017)

    CAS  Article  Google Scholar 

  17. 17.

    J. Zhao, R. Xu, G. Luo, J. Wu, H.A. Xia, A self-healing, re-moldable and biocompatible crosslinked polysiloxane elastomer. J. Mater. Chem. B 4, 982–989 (2016)

    CAS  Article  Google Scholar 

  18. 18.

    H. Yu, Y. Wang, H. Yang, K. Peng, X. Zhang, Injectable self-healing hydrogels formed via thiol/disulfide exchange of thiol functionalized F127 and dithiolane modified PEG. J. Mater. Chem. B 5, 4121–4127 (2017)

    CAS  Article  Google Scholar 

  19. 19.

    S. Geng, M.M.U. Haque, K. Oksman, Crosslinked poly(vinyl acetate) (PVA) reinforced with cellulose nanocrystals (CNC): Structure and mechanical properties. Compos. Sci. Technol. 126, 35–42 (2016)

    CAS  Article  Google Scholar 

  20. 20.

    T. Sakuno, A.P. Schniewind, Adhesive qualities of consolidants for deteriorated wood. J. Am. Inst. Conserv. 29, 33–44 (1990)

    Article  Google Scholar 

  21. 21.

    Food Standards Agency: Approved additives and E numbers. Additives and E numbers for colours, preservatives, antioxidants, sweeteners, emulsifiers, stabilisers, thickeners and other types of additives. 1–10 (2018). Accessed 5 March 2020

  22. 22.

    Y. Liu, S.H. Hsu, Synthesis and biomedical applications of self-healing hydrogels. Front. Chem. 6, 449 (2018)

    CAS  Article  Google Scholar 

  23. 23.

    J.P. Gong, Y. Katsuyama, T. Kurokawa, Y. Osada, Double-network hydrogels with extremely high mechanical strength. Adv. Mater. 15, 1155–1158 (2003)

    CAS  Article  Google Scholar 

  24. 24.

    K. Haraguchi, T. Takehisa, Nanocomposite hydrogels: a unique organiciInorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Adv. Mater. 14, 1120–1124 (2002)

    CAS  Article  Google Scholar 

  25. 25.

    J.Y. Sun, X. Zhao, W.R.K. Illeperuma, O. Chaudhuri, K.H. Oh, D.J. Mooney, J.J. Vlassak, Z. Suo, Highly stretchable and tough hydrogels. Nature 489, 133–136 (2012)

    CAS  Article  Google Scholar 

  26. 26.

    Q.T.H. Shubhra, A.K.M.M. Alam, M.D.H. Beg, Mechanical and degradation characteristics of natural silk fiber reinforced gelatin composites. Mater. Lett. 65, 333–336 (2011)

    CAS  Article  Google Scholar 

  27. 27.

    F. Kong, R.P.A. Singh, Human gastric simulator (HGS) to study food digestion in human stomach. J. Food Sci. 75, 627–635 (2010)

    Article  Google Scholar 

  28. 28.

    M. Kamba, Y. Seta, A. Kusai, M. Ikeda, K.A. Nishimura, unique dosage form to evaluate the mechanical destructive force in the gastrointestinal tract. Int. J. Pharm. 208, 61–70 (2000)

    CAS  Article  Google Scholar 

  29. 29.

    Q. Rong, W. Lei, L. Chen, Y. Yin, J. Zhou, M. Liu, Anti-freezing, conductive self-healing organohydrogels with stable strain-sensitivity at Subzero temperatures. Angew. Chem. Int. Ed. 56, 14159–14163 (2017)

    CAS  Article  Google Scholar 

  30. 30.

    L. Han, X. Lu, M. Wang, D. Gan, W. Deng, K. Wang, L. Fang, K. Liu, C. Wai, C.Y. Tang, L.T. Weng, H. Yuan, A Mussel-inspired conductive, self-adhesive, and self-healable tough hydrogel as cell stimulators and implantable bioelectronics. Small 13, 1601916 (2017)

    Article  Google Scholar 

Download references


This study was supported by the University of Wollongong and Australian Research Council Centre of Excellence for Electromaterials Science.

Author information



Corresponding author

Correspondence to Marc in het Panhuis.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 202 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Keller, A., Warren, H. & Panhuis, M.i.h. Self-healing hydrogel electrodes from ingestible materials. MRS Communications (2021).

Download citation


  • Composite
  • Elastic properties
  • Electrical properties
  • Polymer
  • Sol–gel