Skip to main content
Log in

Possibility of interstitial Na as electron donor in Yb14MgSb11

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Here, we investigate Na-doping Yb14MgSb11 as a potential route to increase carrier concentration based on an improved multiband model. Experimental transport data were collected on Yb14-xNaxMgSb11 samples prepared by ball milling and hot pressing. We show that Na increases the Seebeck coefficient and resistivity, suggesting that it behaves not as a substituent but as an interstitial electron donor under this synthesis and processing conditions, decreasing hole carrier concentration. Density functional theory (DFT) calculations of equilibrium phases, defect formation enthalpies, and band diagrams shed light on the defect-modified carrier concentrations. Depending on the equilibrium phase, Na can behave as a substitutional or interstitial defect.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. G. J. Snyder and E. S. Toberer: Complex thermoelectric materials. Nat. Mater. 7(2), (2008).

  2. S.R. Brown, S.M. Kauzlarich, F. Gascoin, G.J. Snyder, Yb14MnSb11: new high efficiency thermoelectric material for power generation. Chem. Mater. 18(7), 1873–1877 (2006)

    Article  CAS  Google Scholar 

  3. J.H. Grebenkemper, Y. Hu, D. Barrett, P. Gogna, C.K. Huang, S.K. Bux, S.M. Kauzlarich, High temperature thermoelectric properties of Yb14MnSb11 prepared from reaction of MnSb with the elements. Chem. Mater. 27(16), 5791–5798 (2015)

    Article  CAS  Google Scholar 

  4. Y. Hu, G. Cerretti, E. Wille, S. Bux, and S. Kauzlarich: The remarkable crystal chemistry of the Ca14AlSb11 structure type, magnetic and thermoelectric properties. J. Solid State Chem. 271, (2018).

  5. A.P. Justl, G. Cerretti, S.K. Bux, S.M. Kauzlarich, Hydride assisted synthesis of the high temperature thermoelectric phase: Yb14MgSb11. J. Appl. Phys. 126(16), 165106 (2019)

    Article  Google Scholar 

  6. A. Zevalkink, D.M. Smiadak, J.L. Blackburn, A.J. Ferguson, M.L. Chabinyc, O. Delaire, J. Wang, K. Kovnir, J. Martin, L.T. Schelhas, T.D. Sparks, S.D. Kang, M.T. Dylla, G.J. Snyder, B.R. Ortiz, E.S. Toberer, A practical field guide to thermoelectrics: fundamentals, synthesis, and characterization. Appl. Phys. Rev. 5(2), 021303 (2018)

    Article  Google Scholar 

  7. E.S. Toberer, M. Christensen, B.B. Iversen, G.J. Snyder, High temperature thermoelectric efficiency in Ba8Ga16Ge30. Phys. Rev. B. 77, 075203 (2008)

    Article  Google Scholar 

  8. X. Shi, Y. Pei, G.J. Snyder, L. Chen, Optimized thermoelectric properties of Mo3Sb7−xTex with significant phonon scattering by electrons. Energy Environ. Sci. 4(10), 4086–4095 (2011)

    Article  CAS  Google Scholar 

  9. C. J. Perez, M. Wood, F. Ricci, G. Yu, T. Vo, S. K. Bux, G. Hautier, G. Rignanse, G. J. Snyder, S. M. Kauzlarich: Discovery of multivalley Fermi surface responsible for the high thermoelectric performance in Yb14MnSb11 and Yb14MgSb11. Sci. Adv. 7(4), (2021)

  10. E.S. Toberer, C.A. Cox, S.R. Brown, T. Ikeda, A.F. May, S.M. Kauzlarich, G.J. Snyder, Traversing the metal-insulator transition in a Zintl Phase: rational enhancement of thermoelectric efficiency in Yb14Mn1−xAlxSb11. Adv. Funct. Mater. 18(18), 2795–2800 (2008)

    Article  CAS  Google Scholar 

  11. E. L. Kunz Wille, N. S. Grewal, S. K. Bux, and S. M. Kauzlarich: Seebeck and figure of merit enhancement by rare Earth doping in Yb14-xRExZnSb11 (x = 0.5). Materials. 12(5), (2019).

  12. Y. Hu, J. Wang, A. Kawamura, K. Kovnir, S.M. Kauzlarich, Yb14MgSb11 and Ca14MgSb11—new Mg-containing Zintl compounds and their structures, bonding, and thermoelectric properties. Chem. Mater. 27(1), 343–351 (2015)

    Article  CAS  Google Scholar 

  13. J.F. Rauscher, C.A. Cox, T. Yi, C.M. Beavers, P. Klavins, E.S. Toberer, G.J. Snyder, S.M. Kauzlarich, Synthesis, structure, magnetism, and high temperature thermoelectric properties of Ge doped Yb14MnSb11. Dalton Trans. 39(4), 1055–1062 (2010)

    Article  CAS  Google Scholar 

  14. R. Shannon, Revised effective ionic radii and systematic study of inter atomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A. 32, 751–767 (1976)

    Article  Google Scholar 

  15. W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140(4A), A1133–A1138 (1965)

    Article  Google Scholar 

  16. G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B. 47(1), 558–561 (1993)

    Article  CAS  Google Scholar 

  17. G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 15–50 (1996)

    Article  CAS  Google Scholar 

  18. G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 54(16), 11169–11186 (1996)

    Article  CAS  Google Scholar 

  19. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996)

    Article  CAS  Google Scholar 

  20. G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 59(3), 1758–1775 (1999)

    Article  CAS  Google Scholar 

  21. J. P. Perdew, K. Burke, and M. Ernzerhof: Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)]. Phys. Rev. Lett. 78(7), pp. 1396–1396, (1997).

  22. P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B. 50(24), 17953–17979 (1994)

    Article  Google Scholar 

  23. A. Togo, I. Tanaka, First principles phonon calculations in materials science. Scr. Mater. 108, 1–5 (2015)

    Article  CAS  Google Scholar 

  24. H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B. 13(12), 5188–5192 (1976)

    Article  Google Scholar 

  25. C.J. Perez, X. Qi, Z. Chen, S.K. Bux, S. Chanakain, B. Li, K. Liu, R. Dhall, K.C. Bustillo, S.M. Kauzlarich, Improved power factor and mechanical properties of composites of Yb14MgSb11 with iron. ACS Appl. Energy Mater. 3(3), 2147–2159 (2020)

    Article  CAS  Google Scholar 

  26. K.A. Borup, E.S. Toberer, L.D. Zoltan, G. Nakatsukasa, M. Errico, J.P. Fleurial, B.B. Iversen, G.J. Snyder, Measurement of the electrical resistivity and Hall coefficient at high temperatures. Rev. Sci. Instrum. 83(12), 123902 (2012)

    Article  Google Scholar 

  27. S. Yazdani, H.-Y. Kim, M.T. Pettes, Uncertainty analysis of axial temperature and Seebeck coefficient measurements. Rev. Sci. Instrum. 89(8), 084903 (2018)

    Article  Google Scholar 

  28. P.K. Allan, J.M. Griffin, A. Darwiche, O.J. Borkiewicz, K.M. Wiaderek, K.W. Chapman, A.J. Morris, P.J. Chupas, L. Monconduit, C.P. Grey, Tracking sodium-antimonide phase transformations in sodium-ion anodes: insights from operando pair distribution function analysis and solid-state NMR spectroscopy. J. Am. Chem. Soc. 138(7), 2352–2365 (2016)

    Article  CAS  Google Scholar 

  29. C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse, A. Janotti, C.G. Van de Walle, First-principles calculations for point defects in solids. Rev. Mod. Phys. 86(1), 253–305 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

We thank NSF DMREF award# 1729487 for support of this project. NAP was supported by a grant from the Undergraduate Research Grant Program which is administered by Northwestern University's Office of Undergraduate Research. MYT acknowledges support from the United States Department of Energy through the Computational Science Graduate Fellowship (DOE CSGF) under Grant Number DE-SC0020347. This research was supported in part through the computational resources and staff contributions provided for the Quest high-performance computing facility at Northwestern University which is jointly supported by the Office of the Provost, the Office for Research, and Northwestern University Information Technology.

Funding

The study resulting in this publication was supported by a grant from the Undergraduate Research Grant Program which is administered by Northwestern University's Office of Undergraduate Research. M.W.'s research at the Jet Propulsion Laboratory was supported by an appointment to the NASA Postdoctoral Program, administered by the Universities Space Research Association under contract with the NASA. NSF DMREF award #1729487.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors.

Corresponding author

Correspondence to G. Jeffrey Snyder.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 284 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pieczulewski, N.A., Wood, M., Toriyama, M.Y. et al. Possibility of interstitial Na as electron donor in Yb14MgSb11. MRS Communications 11, 226–232 (2021). https://doi.org/10.1557/s43579-021-00019-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-021-00019-x

Keywords

Navigation