Skip to main content
Log in

Enhancing nanomaterial dispersion and performance of parts printed via FFF by a solution casting method

  • Polymers for Additive Manufacturing Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Nanocomposites represent an important way to expand the boundaries of material-property space. To advance their use in printing by fused filament fabrication (FFF), we develop a method based on colloidal solution mixing to improve dispersion of various nanofiller additives in printed parts. Printed nanocomposites exhibit increases in Young’s modulus of up to 41%, decreases in part-to-part variation, and the ability to reach higher nanofiller loading levels. Optical microscopy shows a reduction in nanofiller aggregates in parts created using this solution casting method. Improvements in printability, quality, and performance of FFF-printed parts may accelerate the utility of nanocomposites in FFF.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Figure 1.
Figure 2.
Figure 3.

References

  1. J.R.C. Dizon, A.D. Valino, L.R. Souza, A.H. Espera, Q. Chen, R.C. Advincula, Three-dimensional-printed molds and materials for injection molding and rapid tooling applications. MRS Commun. 9, 1267 (2019)

    Article  CAS  Google Scholar 

  2. C.M. González-Henríquez, M.A. Sarabia-Vallejos, J. Rodriguez-Hernandez, Polymers for additive manufacturing and 4D-printing: materials, methodologies, and biomedical applications. Prog. Polym. Sci. 94, 57 (2019)

    Article  Google Scholar 

  3. R.C. Advincula, J.R.C. Dizon, Q. Chen, I. Niu, J. Chung, L. Kilpatrick, R. Newman, Additive manufacturing for COVID-19: devices, materials, prospects, and challenges. MRS Commun. 10, 413 (2020)

    Article  CAS  Google Scholar 

  4. S.C. Daminabo, S. Goel, S.A. Grammatikos, H.Y. Nezhad, V.K. Thakur, Fused deposition modeling-based additive manufacturing (3D printing): techniques for polymer material systems. Mater. Today Chem. 16, 100248 (2020)

    Article  CAS  Google Scholar 

  5. R. Wang, K.-J. Cheng, R.C. Advincula, Q. Chen, On the thermal processing and mechanical properties of 3D-printed polyether ether ketone. MRS Commun. 9, 1046 (2019)

    Article  CAS  Google Scholar 

  6. S.C. Ligon, R. Liska, J. Stampfl, M. Gurr, R. Mülhaupt, Polymers for 3D printing and customized additive manufacturing. Chem. Rev. 117, 10212 (2017)

    Article  CAS  Google Scholar 

  7. J.R.C. Dizon, A.H. Espera, Q. Chen, R.C. Advincula, Mechanical characterization of 3D-printed polymers. Addit. Manuf. 20, 44 (2018)

    CAS  Google Scholar 

  8. T.D. Ngo, A. Kashani, G. Imbalzano, K.T.Q. Nguyen, D. Hui, Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Composites B 143, 172 (2018)

    Article  CAS  Google Scholar 

  9. M. Harris, J. Potgieter, R. Archer, K.M. Arif, Effect of material and process specific factors on the strength of printed parts in fused filament fabrication: a review of recent developments. Materials 12, 1664 (2019)

    Article  CAS  Google Scholar 

  10. A. Mora, P. Verma, S. Kumar, Electrical conductivity of CNT/polymer composites: 3D printing, measurements and modeling. Composites B 183, 107600 (2020)

    Article  CAS  Google Scholar 

  11. L. Kool, A. Bunschoten, A.H. Velders, V. Saggiomo, Gold nanoparticles embedded in a polymer as a 3D-printable dichroic nanocomposite material. Beilstein J. Nanotechnol. 10, 442 (2019)

    Article  CAS  Google Scholar 

  12. D.P. Street, A.H. Mah, S. Patterson, D.L. Pickel, J.A. Bergman, G.E. Stein, J.M. Messman, S.M. Kilbey, Interfacial interactions in PMMA/silica nanocomposites enhance the performance of parts created by fused filament fabrication. Polymer 157, 87 (2018)

    Article  CAS  Google Scholar 

  13. D.P. Street, A.H. Mah, W.K. Ledford, S. Patterson, J.A. Bergman, B.S. Lokitz, D.L. Pickel, J.M. Messman, G.E. Stein, S.M. Kilbey, Tailoring interfacial interactions via polymer-grafted nanoparticles improves performance of parts created by 3D printing. ACS Appl. Polym. Mater. 2, 1312 (2020)

    Article  CAS  Google Scholar 

  14. Y. Dong, J. Milentis, A. Pramanik, Additive manufacturing of mechanical testing samples based on virgin poly (lactic acid) (PLA) and PLA/wood fibre composites. Adv. Manuf. 6, 71 (2018)

    Article  CAS  Google Scholar 

  15. Y.S. Ko, D. Herrmann, O. Tolar, W.J. Elspass, C. Brändli, Improving the filament weld-strength of fused filament fabrication products through improved interdiffusion. Addit. Manuf. 29, 100815 (2019)

    CAS  Google Scholar 

  16. F.V. Ferreira, W. Francisco, B.R.C. Menezes, F.S. Brito, A.S. Coutinho, L.S. Cividanes, A.R. Coutinho, G.P. Thim, Correlation of surface treatment, dispersion and mechanical properties of HDPE/CNT nanocomposites. Appl. Surf. Sci. 389, 921 (2016)

    Article  CAS  Google Scholar 

  17. K. Prashantha, J. Soulestin, M.-F. Lacrampe, M. Claes, G. Dupin, P. Krawczak, Multi-walled carbon nanotube filled polypropylene nanocomposites based on masterbatch route: Improvement of dispersion and mechanical properties through PP-g-MA addition. EXPRESS Polym. Lett. 2, 735 (2008)

    Article  CAS  Google Scholar 

  18. G. Spinelli, P. Lamberti, V. Tucci, R. Ivanova, S. Tabakova, E. Ivanov, R. Kotsilkova, S. Cimmino, R. Di Maio, C. Silvestre, Rheological and electrical behaviour of nanocarbon/poly(lactic) acid for 3D printing applications. Composites B 167, 467 (2019)

    Article  CAS  Google Scholar 

  19. R. Dermanaki Farahani, M. Dubé, Printing polymer nanocomposites and composites in three dimensions. Adv. Eng. Mater. 20, 1700539 (2018)

    Article  Google Scholar 

  20. R.D. Farahani, M. Dubé, D. Therriault, Three-dimensional printing of multifunctional nanocomposites: Manufacturing techniques and applications. Adv. Mater. 28, 5794 (2016)

    Article  CAS  Google Scholar 

  21. S.F. Costa, F.M. Duarte, J.A. Covas, Estimation of filament temperature and adhesion development in fused deposition techniques. J. Mater. Process. Technol. 245, 167 (2017)

    Article  Google Scholar 

  22. J. Yin, C. Lu, J. Fu, Y. Huang, Y. Zheng, Interfacial bonding during multi-material fused deposition modeling (FDM) process due to inter-molecular diffusion. Mater. Des. 150, 104 (2018)

    Article  CAS  Google Scholar 

  23. C. Li, J. Han, C.Y. Ryu, B.C. Benicewicz, A versatile method to prepare RAFT agent anchored substrates and the preparation of PMMA grafted nanoparticles. Macromolecules 39, 3175 (2006)

    Article  CAS  Google Scholar 

  24. D.P. Street, W.K. Ledford, A.A. Allison, S. Patterson, D.L. Pickel, B.S. Lokitz, J.M. Messman, S.M. Kilbey, Self-complementary multiple hydrogen-bonding additives enhance thermomechanical properties of 3D-printed PMMA structures. Macromolecules 52, 5574 (2019)

    Article  CAS  Google Scholar 

  25. V. Khoshkava, M.R. Kamal, Effect of drying conditions on cellulose nanocrystal (CNC) agglomerate porosity and dispersibility in polymer nanocomposites. Powder Technol. 261, 288 (2014)

    Article  CAS  Google Scholar 

  26. S. Sabury, T.J. Adams, M. Kocherga, S.M. Kilbey, M.G. Walter, Synthesis and optoelectronic properties of benzodithiophene-based conjugated polymers with hydrogen bonding nucleobase side chain functionality. Polym. Chem. 11, 5735 (2020)

    Article  CAS  Google Scholar 

  27. M. Nishimoto, H. Keskkula, D.R. Paul, Blends of poly(styrene-co-acrylonitrile) and methyl methacrylate based copolymers. Macromolecules 23, 3633 (1990)

    Article  CAS  Google Scholar 

  28. A. Múgica, P.M. Remiro, M. Cortázar, Lattice fluid theory in the analysis of interaction parameters and phase behaviour of blends involving copolymers of cyclohexyl methacrylate, methyl methacrylate and various styrene derivatives. Polymer 41, 5257 (2000)

    Article  Google Scholar 

  29. X. Chen, C.E. Zawaski, G.A. Spiering, B. Liu, C.M. Orsino, R.B. Moore, C.B. Williams, T.E. Long, Quadruple hydrogen bonding supramolecular elastomers for melt extrusion additive manufacturing. ACS Appl. Mater. Interfaces 12, 32006 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support of this work from The Department of Energy’s Kansas City National Security Campus, which is operated and managed by Honeywell Federal Manufacturing & Technologies, LLC, under Contract DE-NA-0002839. The authors also thank Dr. Gila Stein for access to optical microscopy instrumentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Michael Kilbey II.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ledford, W.K., Sabury, S. & Kilbey, S.M. Enhancing nanomaterial dispersion and performance of parts printed via FFF by a solution casting method. MRS Communications 11, 122–128 (2021). https://doi.org/10.1557/s43579-020-00008-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-020-00008-6

Navigation