Skip to main content

Growing silk fibroin in advanced materials for food security

Abstract

This perspective provides an overview of the micro-/nanofabrication methods developed for structural biopolymers, highlighting recent advances in the rapid and ease construction of complex and multifunctional silk fibroin-based devices by integrating top-down manufacturing with bottom-up molecular self-assembly. Of particular interest is the development of a new nanofabrication strategy that employs templated crystallization to direct silk fibroin folding and assembly from a suspension of disordered, random coil molecules to ordered, hierarchical mesostructured materials. Such advancements in structural biopolymers fabrication provide the basis for engineering a new generation of technical materials that can be interfaced with food and plants.

This is a preview of subscription content, access via your institution.

Figure 1.
Figure 2.
Figure 3.

(a), (h) Adapted with permission from Ref. 76, copyright 2020, Springer Nature. (b)–(g), (i)–(n) Reproduced with permission from Ref. 76, copyright 2020, Springer Nature.

Figure 4.
Figure 5.

References

  1. 1.

    ECHA: Restricting the Use of Intentionally Added Microplastic Particles to Consumer or Professional Use Products of Any Kind—Annex XV Restriction Report (2019).

  2. 2.

    J.G. Rouse, M.E. Van Dyke, A review of keratin-based biomaterials for biomedical applications. Materials 3, 999 (2010)

    Google Scholar 

  3. 3.

    H. Tao, D.L. Kaplan, F.G. Omenetto, Silk materials—a road to sustainable high technology. Adv. Mater. 24, 2824 (2012)

    CAS  Google Scholar 

  4. 4.

    D.W. Ding, P.A. Guerette, J. Fu, L.H. Zhang, S.A. Irvine, A. Miserez, From soft self-healing gels to stiff films in suckerin-based materials through modulation of crosslink density and beta-sheet content. Adv. Mater. 27, 3953 (2015)

    CAS  Google Scholar 

  5. 5.

    L.Q. Li, A. Mahara, Z.X. Tong, E.A. Levenson, C.L. McGann, X.Q. Jia, T. Yamaoka, K.L. Kiick, Recombinant resilin-based bioelastomers for regenerative medicine applications. Adv. Healthc. Mater. 5, 266 (2016)

    CAS  Google Scholar 

  6. 6.

    R.M. Parker, G. Guidetti, C.A. Williams, T.H. Zhao, A. Narkevicius, S. Vignolini, B. Frka-Petesic, The self-assembly of cellulose nanocrystals: hierarchical design of visual appearance. Adv. Mater. 30, 1704477 (2018)

    Google Scholar 

  7. 7.

    S. Lee, E.S. Sani, A.R. Spencer, Y. Guan, A.S. Weiss, N. Annabi, Human-recombinant-elastin-based bioinks for 3D bioprinting of vascularized soft tissues. Adv. Mater. 32, 2003915 (2020)

    CAS  Google Scholar 

  8. 8.

    United Nations: The Role of Science, Technology and Innovation in Ensuring Food Security by 2030 (2017).

  9. 9.

    D. Laborde, W. Martin, J. Swinnen, R. Vos, COVID-19 risks to global food security. Science 369, 500 (2020)

    CAS  Google Scholar 

  10. 10.

    C. Mbow, C. Rosenzweig, L.G. Barioni, T.G. Benton, M. Herrero, M. Krishnapillai, E. Liwenga, P. Pradhan, M.G. Rivera-Ferre, T. Sapkota, F.N. Tubiello, Y. Xu, Food Security. in Climate Change and Land: an IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems (2019).

  11. 11.

    FAO: Water for Sustainable Food and Agriculture—A Report Produced for the G20 Presidency of Germany (2017).

  12. 12.

    FAO and ITPS: Status of the World’s Soil Resources—Main Report (2015).

  13. 13.

    U.S. Environmental Protection Agency: Inventory of U.S. Greenhouse Gas Emissions and Sinks (EPA 430-R-16–002, 2016, Washington).

  14. 14.

    C.A. Schlosser, K. Strzepek, X. Gao, C. Fant, É. Blanc, S. Paltsev, H. Jacoby, J. Reilly, A. Gueneau, The future of global water stress: an integrated assessment. Earth’s Future 2, 341–361 (2014)

    Google Scholar 

  15. 15.

    L. Cera, G.M. Gonzalez, Q.H. Liu, S. Choi, C.O. Chantre, J. Lee, R. Gabardi, M.C. Choi, K. Shin, K.K. Parker, A bioinspired and hierarchically structured shape-memory material. Nat. Mater. (2020). https://doi.org/10.1038/s41563-020-0789-2

    Article  Google Scholar 

  16. 16.

    L.Q. Li, Z.X. Tong, X.Q. Jia, K.L. Kiick, Resilin-like polypeptide hydrogels engineered for versatile biological function. Soft Matter 9, 665 (2013)

    CAS  Google Scholar 

  17. 17.

    K. Deepankumar, C. Lim, I. Polte, B. Zappone, C. Labate, M.P. De Santo, H. Mohanram, A. Palaniappan, D.S. Hwang, A. Miserez, Supramolecular beta-sheet suckerin-based underwater adhesives. Adv. Funct. Mater. 30, 1907534 (2020)

    CAS  Google Scholar 

  18. 18.

    F.G. Omenetto, D.L. Kaplan, New opportunities for an ancient material. Science 329, 528 (2010)

    CAS  Google Scholar 

  19. 19.

    X. Hu, P. Cebe, A.S. Weiss, F. Omenetto, D.L. Kaplan, Protein-based composite materials. Mater. Today 15, 208 (2012)

    CAS  Google Scholar 

  20. 20.

    Z.T. Zhou, S.Q. Zhang, Y.T. Cao, B. Marelli, X.X. Xia, T.H. Tao, Engineering the future of silk materials through advanced manufacturing. Adv. Mater. 30, 1706983 (2018)

    Google Scholar 

  21. 21.

    D.W. Ding, J. Pan, S.H. Lim, S. Amini, L.F. Kang, A. Miserez, Squid suckerin microneedle arrays for tunable drug release. J. Mater. Chem. B 5, 8467 (2017)

    CAS  Google Scholar 

  22. 22.

    E. Bat, J. Lee, U.Y. Lau, H.D. Maynard, Trehalose glycopolymer resists allow direct writing of protein patterns by electron-beam lithography. Nat. Commun. 6, 1–8 (2015)

    Google Scholar 

  23. 23.

    Z.Z. Shao, F. Vollrath, Materials: surprising strength of silkworm silk. Nature 418, 741 (2002)

    CAS  Google Scholar 

  24. 24.

    H.J. Jin, D.L. Kaplan, Mechanism of silk processing in insects and spiders. Nature 424, 1057 (2003)

    CAS  Google Scholar 

  25. 25.

    G.H. Altman, F. Diaz, C. Jakuba, T. Calabro, R.L. Horan, J.S. Chen, H. Lu, J. Richmond, D.L. Kaplan, Silk-based biomaterials. Biomaterials 24, 401 (2003)

    CAS  Google Scholar 

  26. 26.

    D.N. Rockwood, R.C. Preda, T. Yucel, X.Q. Wang, M.L. Lovett, D.L. Kaplan, Materials fabrication from Bombyx mori silk fibroin. Nat. Protoc. 6, 1612 (2011)

    CAS  Google Scholar 

  27. 27.

    E.M. Pritchard, X. Hu, V. Finley, C.K. Kuo, D.L. Kaplan, Effect of silk protein processing on drug delivery from silk films. Macromol. Biosci. 13, 311 (2013)

    CAS  Google Scholar 

  28. 28.

    B.P. Partlow, A.P. Tabatabai, G.G. Leisk, P. Cebe, D.L. Blair, D.L. Kaplan, Silk fibroin degradation related to rheological and mechanical properties. Macromol. Biosci. 16, 666 (2016)

    CAS  Google Scholar 

  29. 29.

    B.M. Min, G. Lee, S.H. Kim, Y.S. Nam, T.S. Lee, W.H. Park, Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials 25, 1289 (2004)

    CAS  Google Scholar 

  30. 30.

    S.Z. Lu, X.Q. Wang, Q. Lu, X. Hu, N. Uppal, F.G. Omenetto, D.L. Kaplan, Stabilization of enzymes in silk films. Biomacromolecules 10, 1032 (2009)

    CAS  Google Scholar 

  31. 31.

    H. Tao, B. Marelli, M.M. Yang, B. An, M.S. Onses, J.A. Rogers, D.L. Kaplan, F.G. Omenetto, Inkjet printing of regenerated silk fibroin: from printable forms to printable functions. Adv. Mater. 27, 4273 (2015)

    CAS  Google Scholar 

  32. 32.

    Y.W. Liu, Z.Z. Zheng, H. Gong, M. Liu, S.Z. Guo, G. Li, X.Q. Wang, D.L. Kaplan, DNA preservation in silk. Biomater. Sci. 5, 1279 (2017)

    CAS  Google Scholar 

  33. 33.

    B.D. Lawrence, M. Cronin-Golomb, I. Georgakoudi, D.L. Kaplan, F.G. Omenetto, Bioactive silk protein biomaterial systems for optical devices. Biomacromolecules 9, 1214 (2008)

    CAS  Google Scholar 

  34. 34.

    F.G. Omenetto, D.L. KapLan, A new route for silk. Nat. Photonics 2, 641 (2008)

    CAS  Google Scholar 

  35. 35.

    B. Marelli, F.G. Omenetto, Cashmere-derived keratin for device manufacturing on the micro- and nanoscale. J. Mater. Chem. C 3, 2783 (2015)

    CAS  Google Scholar 

  36. 36.

    M. Cronin-Golomb, A.R. Murphy, J.P. Mondia, D.L. Kaplan, F.G. Omenetto, Optically induced birefringence and holography in silk. J. Polym. Sci. Pol. Phys. 50, 257 (2012)

    CAS  Google Scholar 

  37. 37.

    H. Tao, J.M. Kainerstorfer, S.M. Siebert, E.M. Pritchard, A. Sassaroli, B.J.B. Panilaitis, M.A. Brenckle, J.J. Amsden, J. Levitt, S. Fantini, D.L. Kaplan, F.G. Omenetto, Implantable, multifunctional, bioresorbable optics. Proc. Natl. Acad. Sci. USA 109, 19584 (2012)

    CAS  Google Scholar 

  38. 38.

    S. Kim, A.N. Mitropoulos, J.D. Spitzberg, H. Tao, D.L. Kaplan, F.G. Omenetto, Silk inverse opals. Nat. Photonics 6, 817 (2012)

    Google Scholar 

  39. 39.

    Y. Wang, D. Aurelio, W.Y. Li, P. Tseng, Z.Z. Zheng, M. Li, D.L. Kaplan, M. Liscidini, F.G. Omenetto, Modulation of multiscale 3D lattices through conformational control: painting silk inverse opals with water and light. Adv. Mater. 29, 1702769 (2017)

    Google Scholar 

  40. 40.

    Y. Wang, W.Y. Li, M. Li, S.W. Zhao, F. De Ferrari, M. Liscidini, F.G. Omenetto, Biomaterial-based “structured opals” with programmable combination of diffractive optical elements and photonic bandgap effects. Adv. Mater. 31, 1805312 (2019)

    Google Scholar 

  41. 41.

    P. Domachuk, H. Perry, J.J. Amsden, D.L. Kaplan, F.G. Omenetto, Bioactive “self-sensing” optical systems. Appl. Phys. Lett. 95, 253702 (2009)

    Google Scholar 

  42. 42.

    D.H. Kim, J. Viventi, J.J. Amsden, J.L. Xiao, L. Vigeland, Y.S. Kim, J.A. Blanco, B. Panilaitis, E.S. Frechette, D. Contreras, D.L. Kaplan, F.G. Omenetto, Y.G. Huang, K.C. Hwang, M.R. Zakin, B. Litt, J.A. Rogers, Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater. 9, 511 (2010)

    CAS  Google Scholar 

  43. 43.

    S.W. Hwang, X. Huang, J.H. Seo, J.K. Song, S. Kim, S. Hage-Ali, H.J. Chung, H. Tao, F.G. Omenetto, Z.Q. Ma, J.A. Rogers, Materials for bioresorbable radio frequency electronics. Adv. Mater. 25, 3526 (2013)

    CAS  Google Scholar 

  44. 44.

    H. Tao, S.W. Hwang, B. Marelli, B. An, J.E. Moreau, M.M. Yang, M.A. Brenckle, S. Kim, D.L. Kaplan, J.A. Rogers, F.G. Omenetto, Silk-based resorbable electronic devices for remotely controlled therapy and in vivo infection abatement. Proc. Natl. Acad. Sci. USA 111, 17385 (2014)

    CAS  Google Scholar 

  45. 45.

    G.G. Leisk, T.J. Lo, T. Yucel, Q. Lu, D.L. Kaplan, Electrogelation for protein adhesives. Adv. Mater. 22, 711 (2010)

    CAS  Google Scholar 

  46. 46.

    X.Q. Wang, J.A. Kluge, G.G. Leisk, D.L. Kaplan, Sonication-induced gelation of silk fibroin for cell encapsulation. Biomaterials 29, 1054 (2008)

    CAS  Google Scholar 

  47. 47.

    T. Yucel, P. Cebe, D.L. Kaplan, Vortex-induced injectable silk fibroin hydrogels. Biophys. J. 97, 2044 (2009)

    CAS  Google Scholar 

  48. 48.

    A.E. Terry, D.P. Knight, D. Porter, F. Vollrath, PH induced changes in the rheology of silk fibroin solution from the middle division of Bombyx mori silkworm. Biomacromolecules 5, 768 (2004)

    CAS  Google Scholar 

  49. 49.

    U.J. Kim, J.Y. Park, C.M. Li, H.J. Jin, R. Valluzzi, D.L. Kaplan, Structure and properties of silk hydrogels. Biomacromolecules 5, 786 (2004)

    CAS  Google Scholar 

  50. 50.

    A. Matsumoto, J. Chen, A.L. Collette, U.J. Kim, G.H. Altman, P. Cebe, D.L. Kaplan, Mechanisms of silk fibroin sol-gel transitions. J. Phys. Chem. B 110, 21630 (2006)

    CAS  Google Scholar 

  51. 51.

    B.P. Partlow, C.W. Hanna, J. Rnjak-Kovacina, J.E. Moreau, M.B. Applegate, K.A. Burke, B. Marelli, A.N. Mitropoulos, F.G. Omenetto, D.L. Kaplan, Highly tunable elastomeric silk biomaterials. Adv. Funct. Mater. 24, 4615 (2014)

    CAS  Google Scholar 

  52. 52.

    P. Tseng, B. Napier, S.W. Zhao, A.N. Mitropoulos, M.B. Applegate, B. Marelli, D.L. Kaplan, F.G. Omenetto, Directed assembly of bio-inspired hierarchical materials with controlled nanofibrillar architectures. Nat. Nanotechnol. 12, 474 (2017)

    CAS  Google Scholar 

  53. 53.

    B. Marelli, N. Patel, T. Duggan, G. Perotto, E. Shirman, C.M. Li, D.L. Kaplan, F.G. Omenetto, Programming function into mechanical forms by directed assembly of silk bulk materials. Proc. Natl. Acad. Sci. USA 114, 451 (2017)

    CAS  Google Scholar 

  54. 54.

    G. Matzeu, L. Mogas-Soldevila, W.Y. Li, A. Naidu, T.H. Turner, R. Gu, P.R. Blumeris, P. Song, D.G. Pascal, G. Guidetti, M. Li, F.G. Omenetto, Large-scale patterning of reactive surfaces for wearable and environmentally deployable sensors. Adv. Mater. 32, 2001258 (2020)

    CAS  Google Scholar 

  55. 55.

    K. Schacht, T. Jungst, M. Schweinlin, A. Ewald, J. Groll, T. Scheibel, Biofabrication of cell-loaded 3D spider silk constructs. Angew. Chem. Int. Ed. 54, 2816 (2015)

    CAS  Google Scholar 

  56. 56.

    R.R. Jose, M.J. Rodriguez, T.A. Dixon, F. Omenetto, D.L. Kaplan, Evolution of bioinks and additive manufacturing technologies for 3d bioprinting. ACS Biomater. Sci. Eng. 2, 1662 (2016)

    CAS  Google Scholar 

  57. 57.

    A. Lee, A.R. Hudson, D.J. Shiwarski, J.W. Tashman, T.J. Hinton, S. Yerneni, J.M. Bliley, P.G. Campbell, A.W. Feinberg, 3D bioprinting of collagen to rebuild components of the human heart. Science 365, 482 (2019)

    CAS  Google Scholar 

  58. 58.

    S. Ghosh, S.T. Parker, X.Y. Wang, D.L. Kaplan, J.A. Lewis, Direct-write assembly of microperiodic silk fibroin scaffolds for tissue engineering applications. Adv. Funct. Mater. 18, 1883 (2008)

    CAS  Google Scholar 

  59. 59.

    M.J. Rodriguez, T.A. Dixon, E. Cohen, W.W. Huang, F.G. Omenetto, D.L. Kaplan, 3D freeform printing of silk fibroin. Acta Biomater. 71, 379 (2018)

    CAS  Google Scholar 

  60. 60.

    A.N. Mitropoulos, G. Perotto, S. Kim, B. Marelli, D.L. Kaplan, F.G. Omenetto, Synthesis of silk fibroin micro-and submicron spheres using a co-flow capillary device. Adv. Mater. 26, 1105 (2014)

    CAS  Google Scholar 

  61. 61.

    U. Shimanovich, F.S. Ruggeri, E. De Genst, J. Adamcik, T.P. Barros, D. Porter, T. Muller, R. Mezzenga, C.M. Dobson, F. Vollrath, C. Holland, T.P.J. Knowles, Silk micrococoons for protein stabilisation and molecular encapsulation. Nat. Commun. 8, 1–9 (2017)

    Google Scholar 

  62. 62.

    X.H. Zhang, M.R. Reagan, D.L. Kaplan, Electrospun silk biomaterial scaffolds for regenerative medicine. Adv. Drug Deliv. Rev. 61, 988 (2009)

    CAS  Google Scholar 

  63. 63.

    C.R. Wittmer, T. Claudepierre, M. Reber, P. Wiedemann, J.A. Garlick, D. Kaplan, C. Egles, Multifunctionalized electrospun silk fibers promote axon regeneration in the central nervous system. Adv. Funct. Mater. 21, 4232 (2011)

    CAS  Google Scholar 

  64. 64.

    M. Humenik, G. Lang, T. Scheibel, Silk nanofibril self-assembly versus electrospinning. Wires Nanomed. Nanobi 10, e1509 (2018)

    Google Scholar 

  65. 65.

    S. Kim, B. Marelli, M.A. Brenckle, A.N. Mitropoulos, E.S. Gil, K. Tsioris, H. Tao, D.L. Kaplan, F.G. Omenetto, All-water-based electron-beam lithography using silk as a resist. Nat. Nanotechnol. 9, 306 (2014)

    CAS  Google Scholar 

  66. 66.

    N. Qin, S.Q. Zhang, J.J. Jiang, S. Gilbert Corder, Z.G. Qian, Z.T. Zhou, W. Lee, K.Y. Liu, X.H. Wang, X.X. Li, Z.F. Shi, Y. Mao, H.A. Bechtel, M.C. Martin, X.X. Xia, B. Marelli, D.L. Kaplan, F.G. Omenetto, M.K. Liu, T.H. Tao, Nanoscale probing of electron-regulated structural transitions in silk proteins by near-field IR imaging and nano-spectroscopy. Nat. Commun. 7, 1–8 (2016)

    Google Scholar 

  67. 67.

    J.J. Jiang, S.Q. Zhang, Z.G. Qian, N. Qin, W.W. Song, L. Sun, Z.T. Zhou, Z.F. Shi, L. Chen, X.X. Li, Y. Mao, D.L. Kaplan, S.N.G. Corder, X.Z. Chen, M.K. Liu, F.G. Omenetto, X.X. Xia, T.H. Tao, Protein bricks: 2D and 3D bio-nanostructures with shape and function on demand. Adv. Mater. 30, 1705919 (2018)

    Google Scholar 

  68. 68.

    Y.L. Sun, Q. Li, S.M. Sun, J.C. Huang, B.Y. Zheng, Q.D. Chen, Z.Z. Shao, H.B. Sun, Aqueous multiphoton lithography with multifunctional silk-centred bio-resists. Nat. Commun. 6, 8612 (2015)

    CAS  Google Scholar 

  69. 69.

    M.B. Dickerson, P.B. Dennis, V.P. Tondiglia, L.J. Nadeau, K.M. Singh, L.F. Drummy, B.P. Partlow, D.P. Brown, F.G. Omenetto, D.L. Kaplan, R.R. Naik, 3D printing of regenerated silk fibroin and antibody-containing microstructures via multiphoton lithography. ACS Biomater. Sci. Eng. 3, 2064 (2017)

    CAS  Google Scholar 

  70. 70.

    J.W.C. Dunlop, P. Fratzl, Biological composites. Annu. Rev. Mater. Res. 40, 1 (2010)

    CAS  Google Scholar 

  71. 71.

    M.X. Wang, S.E. Seo, P.A. Gabrys, D. Fleischman, B. Lee, Y. Kim, H.A. Atwater, R.J. Macfarlane, C.A. Mirkin, Epitaxy: programmable atom equivalents versus atoms. ACS Nano 11, 180 (2017)

    CAS  Google Scholar 

  72. 72.

    Q.Y. Lin, E. Palacios, W.J. Zhou, Z.Y. Li, J.A. Mason, Z.Z. Liu, H.X. Lin, P.C. Chen, V.P. Dravid, K. Aydin, C.A. Mirkin, DNA-mediated size-selective nanoparticle assembly for multiplexed surface encoding. Nano Lett. 18, 2645 (2018)

    CAS  Google Scholar 

  73. 73.

    M. Li, Y. Wang, A.P. Chen, A. Naidu, B.S. Napier, W.Y. Li, C.L. Rodriguez, S.A. Crooker, F.G. Omenetto, Flexible magnetic composites for light-controlled actuation and interfaces. Proc. Natl. Acad. Sci. USA 115, 8119 (2018)

    CAS  Google Scholar 

  74. 74.

    Y. Wang, B.J. Kim, B. Peng, W.Y. Li, Y.Q. Wang, M. Li, F.G. Omenetto, Controlling silk fibroin conformation for dynamic, responsive, multifunctional, micropatterned surfaces. Proc. Natl. Acad. Sci. USA 116, 21361 (2019)

    CAS  Google Scholar 

  75. 75.

    C. Holland, J.S. Urbach, D.L. Blair, Direct visualization of shear dependent silk fibrillogenesis. Soft Matter 8, 2590 (2012)

    CAS  Google Scholar 

  76. 76.

    H. Sun, B. Marelli, Polypeptide templating for designer hierarchical materials. Nat. Commun. 11, 1–13 (2020)

    Google Scholar 

  77. 77.

    R.W. Hao, J.M. Zhang, T. Xu, L. Huang, J.R. Yao, X. Chen, Z.Z. Shao, Characterization and assembly investigation of a dodecapeptide hydrolyzed from the crystalline domain of Bombyx mori silk fibroin. Polym. Chem. 4, 3005 (2013)

    CAS  Google Scholar 

  78. 78.

    T.D. Sutherland, S. Weisman, H.E. Trueman, A. Sriskantha, J.W.H. Trueman, V.S. Haritos, Conservation of essential design features in coiled coil silks. Mol. Biol. Evol. 24, 2424 (2007)

    CAS  Google Scholar 

  79. 79.

    T.D. Sutherland, J.S. Church, X.A. Hu, M.G. Huson, D.L. Kaplan, S. Weisman, Single honeybee silk protein mimics properties of multi-protein silk. PLoS ONE 6, e16489 (2011)

    CAS  Google Scholar 

  80. 80.

    D. Pinotsi, L. Grisanti, P. Mahou, R. Gebauer, C.F. Kaminski, A. Hassanali, G.S.K. Schierle, Proton transfer and structure-specific fluorescence in hydrogen bond-rich protein structures. J. Am. Chem. Soc. 138, 3046 (2016)

    CAS  Google Scholar 

  81. 81.

    F. Zhang, Q. Lu, J.F. Ming, H. Dou, Z. Liu, B.Q. Zuo, M.D. Qin, F. Li, D.L. Kaplan, X.G. Zhang, Silk dissolution and regeneration at the nanofibril scale. J. Mater. Chem. B 2, 3879 (2014)

    CAS  Google Scholar 

  82. 82.

    S.J. Ling, C.M. Li, K. Jin, D.L. Kaplan, M.J. Buehler, Liquid exfoliated natural silk nanofibrils: applications in optical and electrical devices. Adv. Mater. 28, 7783 (2016)

    CAS  Google Scholar 

  83. 83.

    B. Marelli, M.A. Brenckle, D.L. Kaplan, F.G. Omenetto, Silk fibroin as edible coating for perishable food preservation. Sci. Rep. 6, 25263 (2016)

    CAS  Google Scholar 

  84. 84.

    A.T. Zvinavashe, E. Lim, H. Sun, B. Marelli, A bioinspired approach to engineer seed microenvironment to boost germination and mitigate soil salinity. Proc. Natl. Acad. Sci. USA 116, 25555 (2019)

    CAS  Google Scholar 

  85. 85.

    Y.T. Cao, E. Lim, M.L. Xu, J.K. Weng, B. Marelli, Precision delivery of multiscale payloads to tissue-specific targets in plants. Adv. Sci. 7, 1903551 (2020)

    CAS  Google Scholar 

  86. 86.

    FAO, IFAD, UNICEF, WFP, WHO: The State of Food Security and Nutrition in the World 2019: Safeguarding Against Economic Slowdowns and Downturns (2019)

  87. 87.

    FAO: Global Food Losses and Food Waste—Extent, Causes and Prevention (2011)

  88. 88.

    V. Falguera, J.P. Quintero, A. Jimenez, J.A. Munoz, A. Ibarz, Edible films and coatings: structures, active functions and trends in their use. Trends Food Sci. Technol. 22, 292 (2011)

    CAS  Google Scholar 

  89. 89.

    E. Ruggeri, D.Y. Kim, Y.T. Cao, S. Fare, L. De Nardo, B. Marelli, A multilayered edible coating to extend produce shelf life. ACS Sustain. Chem. Eng. 8, 14312 (2020)

    CAS  Google Scholar 

  90. 90.

    S. Pedrini, D.J. Merritt, J. Stevens, K. Dixon, Seed coating: science or marketing spin? Trends Plant Sci. 22, 106 (2017)

    CAS  Google Scholar 

  91. 91.

    B. Lugtenberg, F. Kamilova, Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63, 541 (2009)

    CAS  Google Scholar 

  92. 92.

    D. Kim, Y.T. Cao, D. Mariappan, M.S. Bono, A.J. Har, B. Marelli, A microneedle technology for sampling and sensing bacteria in the food supply chain. Adv. Funct. Mater. (2020)

  93. 93.

    C. Cheng, Z.Z. Shao, F. Vollrath, Silk fibroin-regulated crystallization of calcium carbonate. Adv. Funct. Mater. 18, 2172 (2008)

    CAS  Google Scholar 

  94. 94.

    X.X. Xia, Z.G. Qian, C.S. Ki, Y.H. Park, D.L. Kaplan, S.Y. Lee, Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in a strong fiber. Proc. Natl. Acad. Sci. USA 107, 14059 (2010)

    CAS  Google Scholar 

  95. 95.

    H. Chung, T.Y. Kim, S.Y. Lee, Recent advances in production of recombinant spider silk proteins. Curr. Opin. Biotechnol. 23, 957 (2012)

    CAS  Google Scholar 

  96. 96.

    P.S. Huang, S.E. Boyken, D. Baker, The coming of age of de novo protein design. Nature 537, 320 (2016)

    CAS  Google Scholar 

  97. 97.

    A.R. Thomson, C.W. Wood, A.J. Burton, G.J. Bartlett, R.B. Sessions, R.L. Brady, D.N. Woolfson, Computational design of water-soluble alpha-helical barrels. Science 346, 485 (2014)

    CAS  Google Scholar 

  98. 98.

    Z. Qin, L.F. Wu, H. Sun, S.Y. Huo, T.F. Ma, E. Lim, P.Y. Chen, B. Marelli, M.J. Buehler, Artificial intelligence method to design and fold alpha -helical structural proteins from the primary amino acid sequence. Extreme Mech. Lett. 36, 100652 (2020)

    Google Scholar 

  99. 99.

    J.P. Giraldo, H.H. Wu, G.M. Newkirk, S. Kruss, Nanobiotechnology approaches for engineering smart plant sensors. Nat. Nanotechnol. 14, 541 (2019)

    CAS  Google Scholar 

  100. 100.

    G.V. Lowry, A. Avellan, L.M. Gilbertson, Opportunities and challenges for nanotechnology in the agri-tech revolution. Nat. Nanotechnol. 14, 517 (2019)

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Office of Naval Research (Award No. N000141812258) and the National Science Foundation (Award No. CMMI‐1752172).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Benedetto Marelli.

Ethics declarations

Conflict of interest

BM is co-founder of a company, Mori Inc., that uses silk fibroin-based materials as edible food coatings to increase the shelf-life of perishable food. The use of silk fibroin as an edible coating, seed coating, and to fabricate microneedles for drug delivery in plants is protected by multiple IP positions where BM is listed as a co-inventor.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Marelli, B. Growing silk fibroin in advanced materials for food security. MRS Communications 11, 31–45 (2021). https://doi.org/10.1557/s43579-020-00003-x

Download citation