Abstract
Lipid vesicles formed using double-emulsion drops as templates exhibit uniform sizes and compositions. Despite these important advantages, conventional electroformation continues to be the selected approach for vesicle fabrication to understand biophysical processes in cells using simplified model systems. Here, we address critical aspects that could be hindering the extensive use of emulsion-templating strategies for vesicle fabrication and emphasize certain systematic studies that would help demonstrate further the advantages of microfluidic technologies. Besides the importance of controlling size and composition, we envision that the high throughput of this technology will allow the construction of vesicular materials with controlled architectures.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Abbreviations
- CAM:
-
Cell adhesion molecule
- DOPC:
-
1,2-Dioleoyl-sn-glycero-3-phosphocholine
- DPPC:
-
1,2-Dipalmitoyl-sn-glycero-3-phosphocholine
- DOPE-biotinyl:
-
1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine-N-(biotinyl) (sodium salt)
- IVTT:
-
In vitro Transcription-translation
- RICM:
-
Reflection interference contrast microscopy
- W/O:
-
Water-in-oil
- W/O/W:
-
Water-in-oil-in-water
- W/O/O/W:
-
Water-in-oil-in-oil-in-water
References
D. Perrais, C.J. Merrifield, Dynamics of endocytic vesicle creation. Dev. Cell 9, 581–592 (2005)
A. Spang, The life cycle of a transport vesicle. Cell. Mol. Life Sci. 65, 2781–2789 (2008)
G. Raposo, P.D. Stahl, Extracellular vesicles: a new communication paradigm? Nat. Rev. Mol. Cell. Biol. 20, 509–510 (2019)
R. van der Meel, M.H.A.M. Fens, P. Vader, W.W. van Solinge, O. Eniola-Adefeso, R.M. Schiffelers, Extracellular vesicles as drug delivery systems: lessons from the liposome field. J. Control. Release 195, 72–85 (2014)
M.I. Angelova, D.S. Dimitrov, Liposome electroformation. Faraday Discuss. Chem. Soc. 81, 303–311 (1986)
C. Martino, A.J. deMello, Droplet-based microfluidics for artificial cell generation: a brief review. Interface Focus 6, 20160011 (2016)
Y. Huang, S.-H. Kim, L.R. Arriaga, Emulsion templated vesicles with symmetric or asymmetric membranes. Adv. Colloid Interface Sci. 247, 413–425 (2017)
K. Kamiya, Development of artificial cell models using microfluidic technology and synthetic biology. Micromachines 11, 559 (2020)
L.R. Arriaga, S.S. Datta, S.-H. Kim, E. Amstad, T.E. Kodger, F. Monroy, D.A. Weitz, Ultra-thin shell double emulsion templated giant unilamellar lipid vesicles with controlled microdomain formation. Small 10, 950–956 (2014)
S.-H. Kim, J.W. Kim, J.-C. Cho, D.A. Weitz, Double-emulsion drops with ultra-thin shells for capsule templates. Lab Chip 11, 3162–3166 (2011)
L.R. Arriaga, E. Amstad, D.A. Weitz, Scalable single-step microfluidic production of single-core double emulsions with ultra-thin shells. Lab Chip 15, 3335–3340 (2015)
M. Michelon, Y. Huang, L. Gaziola de la Torre, D.A. Weitz, R. Lopes Cunha, Single-step microfluidic production of W/O/W double emulsions as templates for β-carotene loaded giant liposomes formation. Chem. Eng. J. 336, 27–32 (2019)
S.-Y. The, R. Khnouf, H. Fan, A.P. Lee, Stable, biocompatible lipid vesicle generation by solvent extraction-based droplet microfluidics. Biomicrofluidics 5, 044113 (2011)
L.R. Arriaga, Y. Huang, S.-H. Kim, J.L. Aragones, R. Ziblat, S.A. Koehler, D.A. Weitz, Single-step assembly of asymmetric vesicles. Lab Chip 19, 749–756 (2019)
A.G. Ayuyan, F.S. Cohen, Lipid peroxides promote large rafts: Effects of excitation of probes in fluorescence microscopy and electrochemical reactions during vesicle formation. Biophys. J. 91, 2172–2183 (2006)
J. Steinkuhler, P. De Tillieux, R.L. Knorr, R. Lipowsky, R. Dimova, Charged giant unilamellar vesicles prepared by electroformation exhibit nanotubes and transbilayer lipid asymmetry. Sci. Rep. 8, 11838 (2018)
C. Tanford, The Hydrophobic Effect: Formation of Micelles and Biological Membranes (Wiley, New York, 1973).
E.E. Meyer, K.J. Rosenberg, J. Israelachvili, Recent progress in understanding hydrophobic interactions. Proc. Natl Acad. Sci. U.S.A. 103, 15739–15746 (2006)
R. Lipowsky, E. Sackmann, Structure and dynamics of membranes: from cells to vesicles, in Handbook of Biological Physics (Elsevier, Amsterdam, 1995)
G. van Meer, D.R. Voelker, G.W. Feigenson, Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell. Biol. 9, 112–124 (2008)
S.L. Veatch, S.L. Keller, Seeing spots: complex phase behavior in simple membranes. Biochim. Biophys. Acta Mol. Cell Res. 1746, 172–185 (2005)
J.H. Ipsen, K. Jørgensen, O.G. Mouritsen, Density fluctuations in saturated phospholipid bilayers increase as the acyl-chain length decreases. Biophys J. 58, 1099–1107 (1990)
L.A. Bagatolli, E. Gratton, Two photon fluorescence microscopy of coexisting lipid domains in giant unilamellar vesicles of binary phospholipid mixtures. Biophys. J. 78, 290–305 (2000)
R.F.M. de Almeida, A. Fedorov, M. Prieto, Sphingomyelin/phosphatidylcholine/cholesterol phase diagram: boundaries and composition of lipid rafts. Biophys. J. 85, 2406–2416 (2003)
J. Perrotton, R. Ahijado-Guzman, L.H. Moleiro, B. Tinao, A. Guerrero-Martinez, E. Amstad, F. Monroy, L.R. Arriaga, Microfluidic fabrication of vesicles with hybrid lipid/nanoparticle bilayer membranes. Soft Matter 15, 1388–1395 (2019)
P. Husen, L.R. Arriaga, F. Monroy, J.H. Ipsen, L.A. Bagatolli, Morphometric image analysis of giant vesicles: a new tool for quantitative thermodynamics studies of phase separation in lipid membranes. Biophys. J. 103, 2304–2310 (2012)
E. Sezgin, P. Schwille, Fluorescence techniques to study lipid dynamics. Cold Spring Harb. Perspect. Biol. 3, a009803 (2011)
K. Simons, E. Ikonen, Functional rafts in cell membranes. Nature 387, 569–572 (1997)
F.D. Ferguson, T.K. Jones, The Phase Rule (Butterworth and Co., London, 1966).
K. Simons, J.L. Sampaio, Membrane organization and lipid rafts. Cold Spring Harb. Perspect. Biol. 3, a004697 (2011)
N. Kahya, E.-I. Pecheur, W.P. de Boeij, D.A. Wiersma, D. Hoekstra, Reconstitution of membrane proteins into giant unilamellar vesicles via peptide-induced fusion. Biophys. J. 81, 1464–1474 (2001)
J.-B. Manneville, P. Bassereau, S. Ramaswamy, J. Prost, Active membrane fluctuations studied by micropipet aspiration. Phys. Rev. E 64, 021908 (2001)
P. Girard, J. Pécréaux, G. Lenoir, P. Falson, J.-L. Rigaud, P. Bassereau, A new method for the reconstitution of membrane proteins into giant unilamellar vesicles. Biophys. J. 87, 419–429 (2004)
K. Karamdad, R.V. Law, J.M. Seddon, N.J. Brooks, O. Ces, Preparation and mechanical characterisation of giant unilamellar vesicles by a microfluidic method. Lab Chip 15, 557–562 (2015)
V. Romanov, J. McCullough, B.K. Gale, A. Frost, A tunable microfluidic device enables cargo encapsulation by cell- or organelle-sized lipid vesicles comprising asymmetric lipid bilayers. Adv. Biosyst. 3, 1900010 (2019)
R. Cochereau, D. Renard, C. Noûs, A. Boire, Semi-permeable vesicles produced by microfluidics to tune the phase behaviour of encapsulated macromolecules. J. Colloid Interface Sci. 580, 709–719 (2020)
F. Katzen, T.C. Peterson, W. Kudlicki, Membrane protein expression: no cells required. Trends Biotechnol. 27, 455–460 (2009)
N. Shadiac, Y. Nagarajan, S. Waters, M. Hrmova, Close allies in membrane protein research: cell-free synthesis and nanotechnology. Mol. Membr. Biol. 30, 229–245 (2013)
F. Junge, B. Schneider, S. Reckel, D. Schwarz, V. Dotsch, F. Bernhard, Large-scale production of functional membrane proteins. Cell Mol. Life Sci. 65, 1729–1755 (2008)
C. Martino, S.-H. Kim, L. Horsfall, A. Abbaspourrad, S.J. Rosser, J. Cooper, D.A. Weitz, Protein expression, aggregation, and triggered release from polymersomes as artificial cell-like structures. Angew. Chem. Int. Ed. 51, 6416–6420 (2012)
P.J. Yunker, H. Asahara, K.-C. Hung, C. Landry, L.R. Arriaga, I. Akartuna, S. Chong, D.A. Weitz, One-pot system for synthesis, assembly, and display of functional single-span membrane proteins on oil-water interfaces. Proc. Natl Acad. Sci. U.S.A. 113, 608–613 (2015)
J. Pérez-Gil, A. Cruz, C. Casals, Solubility of hydrophobic surfactant proteins in organic solvent/water mixtures. Structural studies on SP-B and SP-C in aqueous organic solvents and lipids. Biochim. Biophys. Acta 1168, 261–270 (1993)
J. Bernardino de la Serna, J. Perez-Gil, A.C. Simonsen, L.A. Bagatolli, Cholesterol rules: direct observation of the coexistence of two fluid phases in native pulmonary surfactant membranes at physiological temperatures. J. Biol. Chem. 279, 40715–40722 (2004)
G. van Meer, Dynamic transbilayer lipid asymmetry. Cold Spring Harb. Perspect. Biol. 3, a004671 (2011)
S. Pautot, B.J. Frisken, D.A. Weitz, Engineering asymmetric vesicles. Proc. Natl. Acad. Sci. U.S.A. 100, 10718–10721 (2003)
P.C. Hu, S. Li, N. Malmstadt, Microfluidic fabrication of asymmetric giant vesicles. ACS Appl. Mater. Interfaces 3, 1434–1440 (2011)
K. Nishimura, H. Suzuki, T. Toyota, T. Yomo, Size control of giant unilamellar vesicles prepared from inverted emulsions. J. Colloid Interface Sci. 376, 119–125 (2012)
S. Matosevic, B.M. Paegel, Layer-by-layer cell membrane assembly. Nat. Chem. 5, 958–963 (2013)
L. Lu, J.W. Schertzer, P.R. Chiarot, Continuous microfluidic fabrication of synthetic asymmetric vesicles. Lab Chip 15, 3591–3599 (2015)
K. Karamdad, R.V. Law, J.M. Seddon, N.J. Brooks, O. Ces, Studying the effects of asymmetry on the bending rigidity of lipid membranes formed by microfluidics. Chem. Commun. 52, 5277–5280 (2016)
F.X. Contreras, L. Sánchez-Magraner, A. Alonso, F.M. Goñi, Transbilayer (flip-flop) lipid motion and lipid scrambling in membranes. FEBS Lett. 584, 1779–1786 (2010)
S. Garg, J. Rühe, K. Lüdtke, R. Jordan, C.A. Naumann, Domain registration in raft-mimicking lipid mixtures studied using polymer-tethered lipid bilayers. Biophys. J. 92, 1263–1270 (2007)
M.C. Blosser, A.R. Honerkamp-Smith, T. Han, M. Haataja, S.L. Keller, Transbilayer colocalization of lipid domains explained via measurement of strong coupling parameters. Biophys. J. 109, 2317–2327 (2015)
M.D. Collins, S.L. Keller, Tuning lipid mixtures to induce or suppress domain formation across leaflets of unsupported asymmetric bilayers. Proc. Natl. Acad. Sci. U.S.A. 105, 124–128 (2008)
N.P. Kamat, M.H. Lee, D. Lee, D.A. Hammer, Micropipette aspiration of double-emulsion templated polymersomes. Soft Matter 7, 9863–9866 (2011)
S.-H. Kim, J. Nam, J.W. Kim, D.-H. Kim, S.-H. Han, D.A. Weitz, Formation of polymersomes with double bilayers templated by quadruple emulsions. Lab Chip 13, 1351–1356 (2013)
S. Maktabi, J.W. Schertzer, P.R. Chiarot, Dewetting-induced formation and mechanical properties of synthetic bacterial outer membrane models (GUVs) with controlled inner-leaflet lipid composition. Soft Matter 15, 3938–3948 (2019)
J. Drazenovic, H. Wang, K. Roth, J. Zhang, S. Ahmed, Y. Chen, G. Bothun, S.L. Wunder, Effect of lamellarity and size on calorimetric phase transitions in single component phosphatidylcholine vesicles. Biochim Biophys. Acta 1848, 532–543 (2015)
M.A. Tahir, Z.P. Guven, L.R. Arriaga, B. Tinao, Y.-S.S. Yang, A. Bekdemir, J.T. Martin, A.N. Bhanji, D. Irvine, F. Stellacci, A. Alexander-Katz, Calcium-triggered fusion of lipid membranes is enabled by amphiphilic nanoparticles. Proc. Natl. Acad. Sci. U.S.A. 117, 18470–18476 (2020)
H.G. Dobereiner, J. Kas, D. Noppl, I. Sprenger, E. Sackmann, Budding and fission of vesicles. Biophys. J. 65, 1396–1403 (1993)
S. Deshpande, W.K. Spoelstra, M. van Doorn, J. Kerssemakers, C. Dekker, Mechanical division of cell-sized liposomes. ACS Nano 12, 2560–2568 (2018)
Y. Matsushita-Ishiodori, M.M. Hanczync, A. Wang, J.W. Szostak, T. Yomo, Using imaging flow cytometry to quantify and optimize giant vesicle production by water-in-oil emulsion transfer methods. Langmuir 35, 2375–2382 (2019)
K. Nishimura, T. Matsuura, K. Nishimura, T. Sunami, H. Suzuki, T. Yomo, Cell-free protein synthesis inside giant unilamellar vesicles analyzed by flow cytometry. Langmuir 28, 8426–8432 (2012)
J. Ovadi, V. Saks, On the origin of intracellular compartmentation and organized metabolic systems. Mol. Cell. Biochem. 256(257), 5–12 (2004)
C.D. Keating, Aqueous phase separations as a possible route to compartmentalization of biological molecules. Acc. Chem. Res. 45, 2114–2124 (2012)
Y. Li, R. Lipowsky, R. Dimova, Membrane nanotubes induced by aqueous phase separation and stabilized by spontaneous curvature. Proc. Natl. Acad. Sci. U.S.A. 108, 4731–4736 (2011)
M.S. Long, C.D. Jones, M.R. Helfrich, L.K. Mangeney-Slavin, C.D. Keating, Dynamic microcompartmentation in synthetic cells. Proc. Natl. Acad. Sci. U.S.A. 102, 5920–5925 (2005)
M. Andes-Koback, C.D. Keating, Complete budding and asymmetric division of primitive model cells to produce daughter vesicles with different interior and membrane compositions. J. Am. Chem. Soc. 133, 9545–9555 (2011)
Y. Li, R. Lipowsky, R. Dimova, Transition from complete to partial wetting within membrane compartments. J. Am. Chem. Soc. 130, 12252–12253 (2008)
M.S. Long, A.-S. Cans, C.D. Keating, Budding and asymmetric protein microcompartmentation in giant vesicles containing two aqueous phases. J. Am. Chem. Soc. 130, 756–762 (2008)
J. Fels, S.N. Orlov, R. Grygorczyk, The hydrogel nature of mammalian cytoplasm contributes to osmosensing and extracellular pH sensing. Biophys. J. 96, 4276–4285 (2009)
S.-H. Kim, J.W. Kim, D.H. Kim, S.H. Han, D.A. Weitz, Polymersomes containing a hydrogel network for high stability and controlled release. Small 9, 124–131 (2013)
C. Martino, T.Y. Lee, S.-H. Kim, A.J. DeMello, Microfluidic generation of PEG-b-PLA polymersomes containing alginate-based core hydrogel. Biomicrofluidics 9, 024101 (2015)
G.C.R. Ellis-Davies, Useful caged compounds for cell physiology. Acc. Chem. Res. 53, 1593–1604 (2020)
P. Hess, J.B. Lansman, R.W. Tsien, Calcium channel selectivity for divalent and monovalent cations. J. Gen. Phys. 88, 293–319 (1986)
D. Bruggemann, J.P. Frohnmayer, J.P. Spatz, Model systems for studying cell adhesion and biomimetic actin networks. Beilstein J. Nanotechnol. 5, 1193–1202 (2014)
A.P. Liu, D.L. Richmond, L. Maibaum, S. Pronk, P.L. Geissler, D.A. Fletcher, Membrane-induced bundling of actin filaments. Nat. Phys. 4, 789–793 (2008)
F.-C. Tsai, B. Stuhrmann, G.H. Koenderink, Encapsulation of active cytoskeletal protein networks in cell-sized liposomes. Langmuir 27, 10061–10071 (2011)
S. Kaufmann, J. Käs, W.H. Goldmann, E. Sackmann, G. Isenberg, Talin anchors and nucleates actin filaments at lipid membranes. FEBS Lett. 314, 203–205 (1992)
H. Heise, T. Bayerl, G. Isenberg, E. Sackmann, Human platelet P-235, a talin-like actin binding protein, binds selectively to mixed lipid bilayers. Biochim. Biophys. Acta 1061, 121–131 (1991)
R. Rodríguez-García, V.A. Volkov, C.-Y. Chen, E.A. Katrukha, N. Olieric, A. Aher, I. Grigoriev, M. Preciado López, M.O. Steinmetz, L.C. Kapitein, G. Koenderink, M. Dogterom, A. Akhmanova, Mechanisms of motor-independent membrane remodeling driven by dynamic microtubules. Curr. Biol. 30, 972–987 (2020)
M. Hayashi, M. Nishiyama, Y. Kazayama, T. Toyota, Y. Harada, K. Takiguchi, Reversible morphological control of tubulin-encapsulating giant liposomes by hydrostatic pressure. Langmuir 32, 3794–3802 (2016)
A. Doostmohammadi, J. Ignés-Mullol, J.M. Yeomans, F. Sagués, Active nematics. Nat. Commun. 9, 3246 (2018)
R. Omidvar, W. Romer, Glycan-decorated protocells: novel features for rebuilding cellular processes. Interface Focus 9, 20180084 (2019)
A. Huerre, V. Miralles, M.G. Jullien, Bubbles and foams in microfludics. Soft Matter 10, 6888–6902 (2014)
G. Villar, A.D. Graham, H. Bayley, A tissue-like printed material. Science 340, 48–52 (2013)
Q. Li, S. Li, X. Zhang, W. Xu, X. Han, Programmed magnetic manipulation of vesicles into spatially coded prototissue architectures arrays. Nat. Commun. 11, 232 (2020)
H. Jin, Y. Zheng, Y. Liu, H. Cheng, Y. Zhou, D. Yan, Reversible and large-scale cytomimetic vesicle aggregation: light-responsive host-guest interactions. Angew. Chem. Int. Ed. 50, 10352–10356 (2011)
P. Gobbo, A.J. Patil, M. Li, R. Harniman, W.H. Briscoe, S. Mann, Programmed assembly of synthetic protocells into thermoresponsive prototissues. Nat. Mater. 17, 1145–1153 (2018)
P.H. Puech, H. Feracci, F. Brochard-Wyart, Adhesion between giant vesicles and supported bilayers decorated with chelated E-cadherin fragments. Langmuir 20, 9763–9768 (2009)
S.F. Fenz, R. Merkel, K. Sengupta, Diffussion and intermembrane distance: case study of avidin and E-cadherin mediated adhesion. Langmuir 25, 1074–1085 (2009)
P. Carrara, P. Stano, P.L. Luisi, Giant vesicles ‘colonies’: a model for primitive cell communities. ChemBioChem 13, 1497–1502 (2012)
T.P. De Souza, G.V. Bossa, P. Stano, F. Steiniger, S. May, P.L. Luisi, A. Fahr, Vesicle aggregates as a model for primitive cellular assemblies. Phys. Chem. Chem. Phys. 19, 20082–20092 (2017)
S. Villringer, J. Madl, T. Sych, C. Manner, A. Imberty, Lectin-mediated protocell crosslinking to mimic cell–cell junctions and adhesion. Sci. Rep. 8, 1932 (2018)
J.P. Ribeiro, S. Villringer, D. Goyard, L. Coche-Guerente, M. Hoferlin, O. Renaudet, W. Romer, A. Imberty, Tailor-made Janus lectin with dual avidity assembles glycoconjugate multilayers and crosslinks protocells. Chem. Sci. 9, 7634–7641 (2018)
S. Michaud, R. Marin, J.T. Westwood, R.M. Tanguay, The tail of integrin activation. Trends Biochem. Sci. 36, 191–198 (2011)
A. Huttlenlocher, R.R. Sandborg, A.F. Horwitz, Adhesion in cell migration. Curr. Opin. Cell Biol. 7, 697–706 (1995)
P. Streicher, P. Nassoy, M. Barmann, A. Dif, V. Marchi-Artzner, F. Brochard-Wyart, J. Spatz, P. Bassereau, Integrin reconstituted in GUVs: a biomimetic system to study initial steps of cell spreading. Biochim. Biophys. Acta Biomembr. 1788, 2291–2300 (2009)
V. Gaul, S.G. Lopez, B.R. Lentz, N. Moran, R.J. Forster, T.E. Keyes, The lateral diffusion and fibrinogen induced clustering of platelet integrin αIIbβ3 reconstituted into physiologically mimetic GUVs. Integr. Biol. 7, 402–411 (2015)
B. Herranz-Blanco, L.R. Arriaga, E. Makila, A. Correia, N. Shrestha, S. Mirza, D.A. Weitz, J. Salonen, J. Hirvonen, H.A. Santos, Microfluidic assembly of multistage porous silicon-lipid vesicles for controlled drug release. Lab Chip 14, 1083–1086 (2014)
K. Gopfrich, B. Haller, O. Staufer, Y. Dreher, U. Mersdorf, I. Platzman, J.P. Spatz, One-pot assembly of complex giant unilamellar vesicle-based synthetic cells. ACS Synth. Biol. 8, 937–947 (2019)
Y. Elani, R.V. Law, O. Ces, Vesicle-based artificial cells as chemical microreactors with spatially segregated reaction pathways. Nat. Commun. 5, 5305 (2014)
H.H. Zepik, P. Walde, E.L. Kostoryz, J. Code, D.M. Yourtee, Lipid vesicles as membrane models for toxicological assessment of xenobiotics. Crit. Rev. Toxicol. 38, 1–11 (2008)
Acknowledgments
LRA and JLA acknowledge financial support from the Spanish Ministry of Science and Innovation (MCI), through the María de Maeztu Programme for Units of Excellence in R&D (CEX2018-000805-M), and through the project (RTI2018-101953-A-I00; MCI/AEI/FEDER, UE). LRA also acknowledges financial support from MCI through the Ramón y Cajal Programme (RYC2018-025575-I; MCI/AEI/FSE, UE).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Tinao, B., Magrinya, P., Aragones, J.L. et al. Double-emulsion templated lipid vesicles as minimal cell mimics for assembling tissue-like vesicular materials. MRS Communications 11, 18–30 (2021). https://doi.org/10.1557/s43579-020-00002-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/s43579-020-00002-y