Skip to main content
Log in

Fabrication and transport properties of ternary thermoelectric composites 0.7 Ca3Co3.9Cu0.1O9/0.3 Bi2Ca2Co1.9Cu0.1Oy/x Ag

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Ag inclusions were introduced into 0.7 Ca3Co3.9Cu0.1O9/0.3 Bi2Ca2Co1.9Cu0.1Oy composites. Characteristic diffraction peak (111) of Ag is detected. Ag inclusions are with irregular particle shape, and the largest particle is about 10 μm. As Ag content (≤ 9 wt%) increases, the electrical resistivity reduces; meanwhile, transformation from semiconductor transport to metallic transport happens. With the rise of Ag content, the Seebeck coefficient reduces in the temperature range 373 K to 773 K apparently. However, its divergence among samples gradually becomes narrow above 773 K. The highest ZT of composites reaches 0.29 at 973 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.

References

  1. L.E. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science. 321, 1457–1461 (2008)

    Article  CAS  Google Scholar 

  2. D.M. Rowe, Handbook of Thermoelectrics (CRC Press, Boca Raton, 1995).

    Google Scholar 

  3. H.J. Goldsmid, R.W. Douglas, The use of semiconductors in thermoelectric refrigeration. Br. J. Appl. Phys. 5(3), 86–90 (1954)

    Google Scholar 

  4. I. Terasaki, Y. Sasago, K. Uchinokura, Large thermoelectric power in NaCo2O4 single crystals. Phys. Rev. B. 56, 12685 (1997)

    Article  Google Scholar 

  5. J.L. Lan, B. Zhan, Y.H. Lin, C.W. Nan, Y.C. Liu, Transport properties in misfit layered Ca2Co2O5 compound. Funct. Mater. Lett. 6(5), 1340001 (2013)

    Article  Google Scholar 

  6. K. Sugiura, H. Ohta, K. Nomura, M. Hirano, H. Hosono, K. Koumoto, High electrical conductivity of layered cobalt oxide Ca3Co4O9 epitaxial films grown by topotactic ion-exchange method. Appl. Phys. Lett. 89, 032111 (2006)

    Article  Google Scholar 

  7. R. Funahashi, I. Matsubara, S. Sodeoka, Thermoelectric properties of Bi2Sr2Co2Ox polycrystalline materials. Appl. Phys. Lett. 76, 2385–2387 (2000)

    Article  CAS  Google Scholar 

  8. A. Maginan, S. Hebert, M. Hervieu, C. Michel, D. Pelloquin, Magnetoresistance and magnetothermopower properties of Bi/Ca/Co/O and Bi(Pb)/Ca/Co/O misfit layer cobaltites. J. Phys. Condens. Matter 15, 2711–2723 (2003)

    Article  Google Scholar 

  9. Y. Wang, L.X. Xu, Y. Sui, X.J. Wang, J.G. Cheng, W.H. Su, Enhanced electron correlation in rare-earth doped Ca3Co4O9. Appl. Phys. Lett. 97(6), 062114 (2010)

    Article  Google Scholar 

  10. U. Hira, J.C. Grivel, D.V. Christensen, N. Pyrds, F. Sher, Electrical, magnetic and magnetotransport properties of Na and Mo doped Ca3Co4O9 materials. RSC Adv. 9(54), 31274–31283 (2019)

    Article  CAS  Google Scholar 

  11. M. Mora, H. Amaveda, M.A. Torres, M.A. Madre, S. Marinel, A. Sotelo, Enhancement of electrical conductivity of Ca2.93Sr0.07Co4O9 thick films via hot uniaxial pressing. Int. J. Appl. Ceram. Technol. 17(3), 1322–1327 (2020)

    Article  CAS  Google Scholar 

  12. R. Shimonishi, M. Hagiwara, S. Fujihara, Fabrication of highly textured Ca3Co4O9 ceramics with controlled density and high thermoelectric power factors. J. Eur. Ceram. Soc. 40(4), 1338–1343 (2020)

    Article  CAS  Google Scholar 

  13. F.P. Zhang, J.L. Shi, J.W. Zhang, X.Y. Zhang, J.X. Zhang, Grain alignment modulation and observed electrical transport properties of Ca3Co4O9 ceramics. Results Phys. 12, 321–326 (2019)

    Article  Google Scholar 

  14. D.L.C. Romo, L. Liang, S.A.P. Navia, Y. Chen, J. Prucz, X. Song, Role of oversized dopant potassium on the nanostructure and thermoelectric performance of calcium cobaltite ceramics. Sustain. Energ. Fuels 2(4), 876–881 (2018)

    Article  Google Scholar 

  15. M.E. Song, H. Le, M.G. Kang, W.J. Li, D. Mauya, B. Poudel, J. Wang, M.A. Meeker, G.A. Khodaparast, S.T. Huxtable, S. Priya, Nanoscale texturing and interfaces in compositionally modified Ca3Co4O9 with enhanced thermoelectric performance. ACS Omega 3, 10798–10810 (2018)

    Article  CAS  Google Scholar 

  16. R.S.C. Bose, A. Nag, Transport properties of p-type Ca3-xLnxCo4O9-Ag (Ln = Lu, Yb; 0.1 ≤ x ≤ 0.2) oxides. Ceram. Int. 46, 3203–3208 (2020)

    Article  CAS  Google Scholar 

  17. G. Constantinescu, A.R. Sarbando, S. Rasekh, D. Lopes, S. Sergiienko, P. Amirkhizi, J.R. Frade, A.V. Kovalevsky, Redox-promoted tailoring of the high-temperature electrical performance in Ca3Co4O9 thermoelectric materials by metallic cobalt addition. Materials 13, 1060–1081 (2020)

    Article  CAS  Google Scholar 

  18. N.B. Feng, Y.W. Liao, Y. Lu, Y. He, Y.R. Jin, Effects of addition of Bi2Ca2Co2Oy on the thermoelectric properties of Ca3Co4O9 poly crystalline ceramics. Appl. Phys. A-Mater. Sci. Process. 124, 432 (2018)

    Article  Google Scholar 

  19. W. Li, J. Wang, B. Poudel, H.B. Kang, S. Huxtable, A. Nozariashmarz, U. Saparamadu, S. Priye, Filiform metal silver nanoinclusions to enhance thermoelectric performance of p-type Ca3Co4O9+δ oxide. ACS Appl. Mater. Inter. 11(45), 21131–12138 (2019)

    Google Scholar 

  20. S. Kirkpatrick, The nature of percolation channels. Solid State Commun. 12(12), 1279–1283 (1973)

    Article  CAS  Google Scholar 

  21. W.Y. Zhao, Z.Y. Liu, Z.G. Sun, Q.J. Zhang, P. Wei, X. Mu, H.Y. Zhou, C.C. Li, S.F. Ma, D.Q. He, P.X. Ji, W.T. Zhu, X.L. Nie, X.L. Su, X.F. Tang, B.G. Shen, X.L. Dong, J.H. Yang, Y. Liu, J. Shi, Superparamagnetic enhancement of thermoelectric. Nature 549, 247–265 (2017)

    Article  CAS  Google Scholar 

  22. V.F. Sergey, L. Francois, Theory of enhancement of thermoelectric properties of materials with nanoinclusions. Phys. Rev. B-Condens Matter 77(21), 1–9 (2008)

    Google Scholar 

  23. H. Zhu, C. Xiao, Strategies for discovery and optimization of thermoelectric materials: role of real objects and local fields. Front Phys. 13(3), 138112 (2018)

    Article  Google Scholar 

  24. X.R. Liu, S.Y. Liu, Y. He, Y. Lu, Y.R. Jin, N.B. Feng, Thermoelectric properties of 0.7 Ca3Co4−xCuxO9/0.3 Bi2Ca2Co2-zCuzOy (x = 0, 0.5, 0.1; z = 0, 0.05, 0.1) composites. J. Mater. Sci. Mater. Electron. 28, 13414–13419 (2017)

    Article  CAS  Google Scholar 

  25. N.B. Feng, Y.W. Liao, S.Y. Li, Y. He, Y. Lu, Y.R. Jin, Anisotropy of thermoelectric composites 0.7 Ca3Co4O9/0.3 Bi2Ca2Co2Oy. J. Mater. Sci. Mater. Electron. 30, 19471–19476 (2019)

    Article  CAS  Google Scholar 

  26. M. Shikano, R. Funahashi, Electrical and thermal properties of single-crystalline (Ca2CoO3)0.7CoO2 with a Ca3Co4O9 structure. Appl. Phys. Lett. 82, 1851 (2003)

    Article  CAS  Google Scholar 

  27. P.H. Xiang, Y. Kinemuchi, H. Kaga, K. Watari, Fabrication and thermoelectric properties of Ca3Co4O9/Ag composites. J. Alloys Compd. 454, 364–369 (2008)

    Article  CAS  Google Scholar 

  28. Y. Song, Q. Sun, L.R. Zhao, F.P. Wang, Z.H. Jiang, Synthesis and thermoelectric power factor of (Ca0.95Bi0.05)3Co4O9/Ag composites. Mater. Chem. Phys. 113, 645–649 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ningbo Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, N., He, Y., Lu, Y. et al. Fabrication and transport properties of ternary thermoelectric composites 0.7 Ca3Co3.9Cu0.1O9/0.3 Bi2Ca2Co1.9Cu0.1Oy/x Ag. MRS Communications 11, 51–56 (2021). https://doi.org/10.1557/s43579-020-00001-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-020-00001-z

Navigation