Skip to main content
Log in

Effect of Co concentration on cation distribution and magnetic and magneto-optical properties of CoxZn1-xFe2O4 nanoparticles synthesized with citrate precursor method

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Magnetic properties of mixed spinel ferrites are determined, in great extent, by the magnetic cation distribution among tetrahedral and octahedral positions in a crystal. In the case of CoZn-ferrites, most researchers reported a predominant localization of the divalent cobalt ions in octahedral positions. Using the citrate precursor auto-combustion method, we successfully synthesized CoxZn1-xFe2O4 nanoparticles (x changed from 0.0 to 0.5) with an approximately evenly distribution of Co2+ ions between these interstitial positions. Fe3+ ions are localized preferably in octahedral positions. This type of 3d-ion distribution predetermined the combination of the large saturation magnetization and very low coercive field of the nanoparticles, which may be of importance for applications. MCD spectra of CoxZn1-xFe2O4 nanoparticles are studied here for the first time. Revealed intense MCD peak at 1.75 eV corresponds to the emission wavelength (710 nm) of some lasers, e.g., ALP-710 nm (NKT Photonics, Denmark) which may be of interest for photonic devices.

Graphical abstract

Mössbauer effect spectra for x = 0 (top left) and x = 0.5 (bottom left) at 300 K (left). Magnetic circular dichroism spectra for x = 0.3 at different temperatures (top right). Hysteresis loops for x = 0.3, 0.4, 0.5 at 100 K (bottom right)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

The data used to support the finding of this study are included with in the article.

Code availability

No codes were generated or analyzed during the current study.

References

  1. K. Chandramouli, B. Suryanarayana, P.P. Varma, V. Raghavendra, K.A. Emmanuel, P. Taddesse, N. Murali, T.W. Mammo, D. Parajuli, Effect of Cr3+ substitution on dc electrical resistivity and magnetic properties of Cu0.7Co0.3Fe2−xCrxO4 ferrite nanoparticles prepared by sol-gel auto combustion method. Results Phys. 24, 104117 (2021). https://doi.org/10.1016/j.rinp.2021.104117

    Article  Google Scholar 

  2. H.R. Daruvuri, N. Murali, M. Madhu, A. Ramakrishna, D. Parajuli, M.P. Dasari, Effects of Zn2+ substitution on the structural, morphological, DC electrical resistivity, permeability and magnetic properties of Co0.5Cu0.5-xZnxFe2O4 nanoferrite. App. Phys. A (2022). https://doi.org/10.1007/s00339-022-06298-y

    Article  Google Scholar 

  3. D. Parajuli, P. Taddesse, N. Murali, K. Samatha, Correlation between the structural, magnetic, and dc resistivity properties of Co0.5M0.5-xCuxFe2O4 (M = Mg, and Zn) nano ferrites. Appl. Phys. A 128, 58 (2022). https://doi.org/10.1007/s00339-021-05211-3

    Article  CAS  Google Scholar 

  4. H.R. Daruvuri, K. Chandu, N. Murali, D. Parajuli, M.P. Dasari, Effect on structural, dc electrical resistivity, and magnetic properties by the substitution of Zn2+ on Co–Cu nano ferrite. Inorganic Chem. Commun. 143, 109794 (2022). https://doi.org/10.1016/j.inoche.2022.109794

    Article  CAS  Google Scholar 

  5. R. Thakur, F. Verma, B. Wan, I. Ravelo, S. Edelman, P. Ovchinnikov, Thakur, Investigation of structural, elastic and magnetic properties of Cu2+ ions substituted cobalt nano ferrites. J. Magn. Magn. Mater. 581, 170980 (2023). https://doi.org/10.1016/j.jmmm.2023.170980

    Article  CAS  Google Scholar 

  6. D. Hamad, N. Afify, M. Omer, G. Abbady, Structure and magnetic properties of Cd(1–x)CoxFe2O4 stoichiometric nanoferrite system. Ceram. Inter. 49, 13924–13932 (2023). https://doi.org/10.1016/j.ceramint.2022.12.274

    Article  CAS  Google Scholar 

  7. K.L.V. Nagasree, B. Suryanarayana, V. Raghavendra, A. Penta, N. Murali, K. Samatha, Cu–Ce substituted cobalt nano ferrite—Structural, morphological, and magnetic behavior prepared by sol-gel auto-combustion. J. Indian Chem. Soc. 100(7), 101025 (2023). https://doi.org/10.1016/j.jics.2023.101025

    Article  CAS  Google Scholar 

  8. J.K. Babu, S. Erfan, N. Revathi, K. Vagdevi, G.S. Reddy, M.V.N.V. Sharma, Enhanced magnetic properties of Co0.5Cu0.25Zn0.25Fe2-xCrxO4 nano ferrites. J. Mater. Sci. Mater. Electron. 35, 1441 (2024). https://doi.org/10.1007/s10854-024-13217-9

    Article  CAS  Google Scholar 

  9. V.S. Rao, V. Prasad, A.R. Rao, K.A. Kumar, T.M. Mohan, Effect of Zn2+ substitution on DC electrical resistivity and magnetic properties of Mg0.5−xZnxCo0.5Fe2O4 nano ferrite. J. Mater. Sci. Mater. Electron. 35, 1398 (2024). https://doi.org/10.1007/s10854-024-13166-3

    Article  CAS  Google Scholar 

  10. M.A. Mousa, A.M. Summan, M.A. Ahmed, A.M. Badawy, Electrical conduction in γ-irradiated and unirradiated Fe3O4, CdFe2O4 and CoxZnl-xFe2O4 (0≤x≤1) ferrites. J. Mater. Sci. 24, 2478–2482 (1989). https://doi.org/10.1007/BF01174515

    Article  CAS  Google Scholar 

  11. T. Slatineanu, A.R. Iordan, V. Oancea, M.N. Palamaru, I. Dumitru, C.P. Constantin, O.F. Caltun, Magnetic and dielectric properties of Co–Zn ferrite. Mater. Sci. Eng. B 178, 1040–1047 (2013). https://doi.org/10.1016/j.mseb.2013.06.014

    Article  CAS  Google Scholar 

  12. .J.Smit, H.P. Wijn, Ferrites. Physical properties of ferrimagnetic oxides in relation to their technical applications. (Philips’ Techn Libr, Eindhoven, 1959). https://archive.org/details/ferritesphysical0000smit/page/n5/mode/2up

  13. P.A. Vinosha, A. Manikandan, A.S.J. Ceicilia, A. Dinesh, G.F. Nirmala, A.C. Preetha, Y. Slimani, M.A. Almessiered, A. Baykal, B. Xavier, Review on recent advances of zinc substituted cobalt ferrite nanoparticles: synthesis characterization and diverse applications. Ceram. Inter. 47, 10512–10535 (2021). https://doi.org/10.1016/j.ceramint.2020.12.289

    Article  CAS  Google Scholar 

  14. P.A. Rao, K.S. Rao, T.R.K.P. Raju, G. Kapusetti, M. Choppadandi, M.C. Varma, K.H. Rao, A systematic study of cobalt-zinc ferrite nanoparticles for self-regulated magnetic hyperthermia. J. Alloys Compd.oys Compd. 794, 60–67 (2019). https://doi.org/10.1016/j.jallcom.2019.04.242

    Article  CAS  Google Scholar 

  15. A.S. Kamzin, I.M. Obaidat, V.G. Semenov, V. Narayanaswamy, I.A. Al-Omari, B. Issa, I.V. Buryanenko, Development and characterization of magnetric nanoparticles Co1−xZnxFe2O4 (0≤x≤0.6) for biomedical applications. Phys. Sol. St. 65, 482–496 (2023). https://doi.org/10.21883/FTT.2023.03.54749.544

    Article  Google Scholar 

  16. A.V. Motorzhina, V.K. Belyaev, V.G. Kolesnikova, S. Jovanovic, L.V. Panina, K.V. Levada, Zinc-doped gold/cobalt ferrite nanoparticles in studying the cytotoxic effect on t-lymphoblastic leukemia cells. Nanobiotechnol. Rep. 17, 436–443 (2022). https://doi.org/10.1134/S2635167622030120

    Article  CAS  Google Scholar 

  17. P. Veverka, L. Kubíckova, Z. Jirak, V. Herynek, M. Veverka, O. Kaman, Temperature and field dependences of transverse relaxivity of Co–Zn ferrite nanoparticles coated with silica: The role of magnetic properties and different regimes. Mater. Chem. Phys. 260, 124178 (2021). https://doi.org/10.1016/j.matchemphys.2020.124178

    Article  CAS  Google Scholar 

  18. Y.S. Haiduk, E.V. Korobko, K.A. Shevtsova, D.A. Kotsikau, I.A. Svito, A.E. Usenka, D. Ivashenkoa, A. Fakhmi, V.V. Pankov, Synthesis, structure and magnetic properties of cobalt-zinc nanoferrite for magnetorheological liquids. Cond. Mat. Interph. 22, 28–38 (2020). https://doi.org/10.17308/kcmf.2020.22/2526

    Article  CAS  Google Scholar 

  19. A. Omelyanchik, K. Levada, S. Pshenichnikov, M. Abdolrahim, M. Baricic, A. Kapitunova, A. Galieva, S. Sukhikh, L. Astakhova, S. Antipov, B. Fabiano, D. Peddis, V. Rodionova, Green synthesis of Co–Zn spinel ferrite nanoparticles: magnetic and intrinsic antimicrobial properties. Materials 13, 5014 (2020). https://doi.org/10.3390/ma13215014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. O.K. Mmelesi, N. Masunga, A. Kuvarega, T.T. Nkambule, B.B. Mamba, K.K. Kefeni, Cobalt ferrite nanoparticles and nanocomposites: Photocatalytic, antimicrobial activity and toxicity in water treatment. Mater. Sci. Semicond. Process. 123, 105523 (2021). https://doi.org/10.1016/j.mssp.2020.105523

    Article  CAS  Google Scholar 

  21. T. Tsoncheva, R. Ivanova, N. Velinov, D. Kovacheva, I. Spassova, D. Karashanova, N. Petrov, Design and catalytic behavior of hosted in activated carbon foam CoxZn1-xFe2O4. Symmetry 13, 1532 (2021). https://doi.org/10.3390/sym13081532

    Article  CAS  Google Scholar 

  22. R. Sagayaraj, S. Aravazhi, G. Chandrasekaran, Review on structural and magnetic properties of (Co–Zn) ferrite nanoparticles. Int. Nano. Lett. 11, 307–319 (2021). https://doi.org/10.1007/s40089-021-00343-z

    Article  CAS  Google Scholar 

  23. G. Márquez, V. Sagredo, R. Guillén-Guillén, G. Attolini, F. Bolzoni, Calcination effects on the crystal structure and magnetic properties of CoFe2O4 nanopowders synthesized by the coprecipitation method. Revista Mexicana de Física 66, 251–257 (2020). https://doi.org/10.31349/RevMexFis.66.251

    Article  Google Scholar 

  24. T.A.S. Ferreira, J.C. Waerenborgh, M.H.R.M. Mendonça, M.R. Nunes, F.M. Costa, Structural and morphological characterization of FeCo2O4 and CoFe2O4 spinels prepared by a coprecipitation method. Sol. State Sci. 5, 383–392 (2003). https://doi.org/10.1016/S1293-2558(03)00011-6

    Article  CAS  Google Scholar 

  25. C. Yao, Q. Zeng, G.F. Goya, T. Torres, J. Liu, H. Wu, M. Ge, Y. Zeng, Y. Wang, J.Z. Jiang, ZnFe2O4 nanocrystals: synthesis and magnetic properties. J. Phys. Chem. C 111, 12274–12278 (2007). https://doi.org/10.1021/jp0732763

    Article  CAS  Google Scholar 

  26. R. Ramadan, M.K. Ahmed, V. Uskokovic, Magnetic, microstructural and photoactivated antibacterial features of nanostructured Co-Zn ferrites of different chemical and phase compositions. J. All. Comp. 856, 157013 (2021). https://doi.org/10.1016/j.jallcom.2020.157013

    Article  CAS  Google Scholar 

  27. F. Gozuak, Y. Koseoglu, A. Baykal, H. Kavasa, Synthesis and characterization of CoxZn1-xFe2O4 magnetic nanoparticles via a PEG-assisted route. J. Magn. Magn. Mater. 321, 2170–2177 (2009). https://doi.org/10.1016/j.jmmm.2009.01.008

    Article  CAS  Google Scholar 

  28. S.G.C. Fonseca, L.S. Neiva, M.A.R. Bonifácio, P.R.C. Santos, U.C. Silva, J.B.L. Oliveira, Tunable magnetic and electrical properties of cobalt and zinc ferrites Co1-xZnxFe2O4 synthesized by combustion route. Mater. Res. 21, e20170861 (2018). https://doi.org/10.1590/1980-5373-MR-2017-0861

    Article  CAS  Google Scholar 

  29. P.A. Asogekar, S.K. Gaonkar, A. Kumar, V.M.S. Verenkar, Influence of Co over magnetically benign Zn ferrite system and study of its structural, dielectric, superparamagnetic and antibacterial efficacy. Mater. Res. Bull. 141, 111330 (2021). https://doi.org/10.1016/j.materresbull.2021.111330

    Article  CAS  Google Scholar 

  30. T. Tatarchuk, M. Bououdina, W. Macyk, O. Shyichuk, N. Paliychuk, I. Yaremiy, B. Al-Najar, M. Pacia, Structural, optical, and magnetic properties of Zn-doped CoFe2O4 nanoparticles. Nanoscale Res. Lett. 12, 141 (2017). https://doi.org/10.1186/s11671-017-1899-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. D. Chahar, S. Taneja, P. Thakur, A. Thakur, Remarkable resistivity and improved dielectric properties of Co–Zn nanoferrites for high frequency applications. J. Alloys. Comp. 843, 155681 (2020). https://doi.org/10.1016/j.jallcom.2020.155681

    Article  CAS  Google Scholar 

  32. I. Sharifi, H. Shokrollahi, Nanostructural, magnetic and Mössbauer studies of nanosized Co1−xZnxFe2O4 synthesized by coprecipitation. J. Magn. Magn. Mater. 324, 2397–2403 (2012). https://doi.org/10.1016/j.jmmm.2012.03.00

    Article  CAS  Google Scholar 

  33. R.D. Shannon, C.T. Prewitt, Effective ionic radii in oxides and fluorides. Acta Crystallogr. Section B: Struct. Sci Crystal Eng. Mat. 25, 925–946 (1969). https://doi.org/10.1107/S0567740869003220

    Article  CAS  Google Scholar 

  34. C.N. Chinnasamy, A. Narayanasamy, N. Ponpandian, K. Chattopadhyay, The influence of Fe3+ ions at tetrahedral sites on the magnetic properties of nanocrystalline ZnFe2O4. Mater. Sci. Eng. A 304–306, 983–987 (2001). https://doi.org/10.1016/S0921-5093(00)01611-7

    Article  Google Scholar 

  35. F.S. Li, L. Wang, J.B. Wang, Q.G. Zhou, X.Z. Zhou, H.P. Kunkel, G. Williams, Site preference of Fe in nanoparticles of ZnFe2O4. J. Magn. Magn. Mater. 268, 332–339 (2004). https://doi.org/10.1016/S0304-8853(03)00544-4

    Article  CAS  Google Scholar 

  36. T. Tatarchuk, A. Shyichuk, Z. Sojka, J. Gryboś, M. Naushad, V. Kotsyubynsky, M. Kowalska, S. Kwiatkowska-Marks, N. Danyliuk, Green synthesis, structure, cations distribution and bonding characteristics of superparamagnetic cobalt-zinc ferrites nanoparticles for Pb(II) adsorption and magnetic hyperthermia applications. J. Mol. Liquids 328, 115375 (2021). https://doi.org/10.1016/j.molliq.2021.115375

    Article  CAS  Google Scholar 

  37. S.S. Jadhav, S.E. Shirsath, B.G. Toksha, S.M. Patange, S.J. Shukla, K.M. Jadhav, Structural properties and cation distribution of Co–Zn nanoferrites. Int. J. Modern. Phys. B 23, 5629–5638 (2009). https://doi.org/10.1142/S021797920905225X

    Article  CAS  Google Scholar 

  38. G. Fan, J. Tong, F. Li, Visible-light-induced photocatalyst based on cobalt-doped zinc ferrite nanocrystals. Ind. Eng. Chem. Res. 51, 13639–13647 (2012). https://doi.org/10.1021/ie201933g

    Article  CAS  Google Scholar 

  39. W.S. Mohamed, M. Alzaid, M.S.M. Abdelbaky, Z. Amghouz, S. García-Granda, A.M. Abu-Dief, Impact of Co2+ substitution on microstructure and magnetic properties of CoxZn1-xFe2O4 nanoparticles. Nanomaterials 9, 1602 (2019). https://doi.org/10.3390/nano9111602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. R.S. Yadav, I. Kuritka, J. Vilcakova, P. Urbanek, M. Machovsky, M. Masar, M. Holek, Structural, magnetic, optical, dielectric, electrical and modulus spectroscopic characteristics of ZnFe2O4 spinel ferrite nanoparticles synthesized via honey-mediated sol-gel combustion method. J. Phys. Chem. Sol. 110, 87–99 (2017). https://doi.org/10.1016/j.jpcs.2017.05.029

    Article  CAS  Google Scholar 

  41. R.K. Ahrenkiel, T.J. Coburn, D. Pearlman, E. Carnall, T.W. Martin, S.L. Lyu, A new class of room-temperature magneto-optic insulators: the cobalt ferrites. AIP Conf. Proc. 24, 186 (1975). https://doi.org/10.1063/1.30040

    Article  Google Scholar 

  42. .G.S. Krinchik, A.P. Khrebtov, A.A. Askochenski, E.M. Speranskaya, S.A. Belyaev, Magneto-optical spectra of 3d ions in spinel ferrites and weak ferromagnets. Zh. Eksp. Teor. Fiz. 72, 699–711; Sov. Phys. JETP 45, 366–372 (1977). http://jetp.ras.ru/cgi-bin/dn/e_045_02_0366.pdf

  43. .G.S. Krinchik, K.M. Mukimov, S.M. Sharipov, A.P. Khrebtov, E.M. Speranskaya, The permittivity tensor and increase in the transmittance of the spinel ferrites upon their conversion into single-sublattice structures. Zh. Eksp. Teor. Fiz. 76, 2126–2136; Sov. Phys. JETP 49, 1074–1079 (1979). http://jetp.ras.ru/cgi-bin/dn/e_049_06_1074.pdf.

  44. Y. Yamazaki, T. Namikawa, K. Suzuki, G. Oda, Preparation of CoZn-ferrite thin films and their magneto-optic properties. IEEE Trans. Magn. 23, 3320–3322 (1987). https://doi.org/10.1109/TMAG.1987.1065412

    Article  Google Scholar 

  45. L. Stichauer, G. Gavoille, Z. Simsa, Optical and magneto-optical properties of nanocrystalline cobalt ferrite films. J. Appl. Phys. 79, 3645–3650 (1996). https://doi.org/10.1063/1.361192

    Article  CAS  Google Scholar 

  46. W.F.J. Fontijn, P.J. van der Zaag, R. Metselaar, On the origin of the magneto-optical effects in Li, Mg, Ni, and Co ferrite. J. Appl. Phys. 83, 6765–6767 (1998). https://doi.org/10.1063/1.367992

    Article  CAS  Google Scholar 

  47. W.F.J. Fontijn, P.J. Zaag, L.F. Fiener, R. Metselaar, M.A.C. Devillers, A consistent interpretation of the magneto-optical spectra of spinel type ferrites. J. Appl. Phys. 85, 5100–5105 (1999). https://doi.org/10.1063/1.369091

    Article  CAS  Google Scholar 

  48. K.J. Kim, H.S. Lee, M.H. Lee, S.H. Lee, Comparative magneto-optical investigation of d–d charge–transfer transitions in Fe3O4, CoFe2O4, and NiFe2O4. J. Appl. Phys. 91, 9974–9977 (2002). https://doi.org/10.1063/1.1480482

    Article  CAS  Google Scholar 

  49. C. Himcinschi, I. Vrejoiu, G. Salvan, M. Fronk, A. Talkenberger, D.R.T. Zahn, D. Rafaja, J. Kortus, Optical and magneto-optical study of nickel and cobalt ferrite epitaxial thin films and submicron structures. J. Appl. Phys. 113, 084101 (2013). https://doi.org/10.1063/1.4792749

    Article  CAS  Google Scholar 

  50. F. Choueikani, D. Jamon, S. Neveu, M.F. Blanc-Mignon, Y. Lefkir, F. Royer, Self-biased magneto-optical films based on CoFe2O4–silica nanocomposite. J. Appl. Phys. 129, 023101 (2021). https://doi.org/10.1063/5.0032620

    Article  CAS  Google Scholar 

  51. E. Lišková-Jakubisová, Š Višňovský, P. Široký, D. Hrabovský, J. Pištora, S.C. Sahoo, S. Prasad, N. Venkataramani, M. Bohra, R. Krishnan, Nanocrystalline zinc ferrite films studied by magneto-optical spectroscopy. J. App. Phys. 117, 17B726 (2015). https://doi.org/10.1063/1.4916936

    Article  CAS  Google Scholar 

  52. W.D. Martens, W.L. Peeters, H.M. Noort, M. Erman, Optical, magneto-optical and Mössbauer spectroscopy on Co3+ substituted cobalt ferrite. J. Phys. Chem. Solids 46, 411–416 (1985). https://doi.org/10.1016/0022-3697(85)90104-0

    Article  CAS  Google Scholar 

  53. S.J. Lee, S.H. Song, C.C. Lo, S.T. Aldini, D.C. Jiles, Magneto-optic properties of CoFe2−xGaxO4. J. Appl. Phys. 101, 09C502 (2007). https://doi.org/10.1063/1.26939535

    Article  Google Scholar 

  54. B. Zhou, Y.W. Zhang, Y.J. Yu, C.S. Liao, C.H. Yan, Correlation between structure and intervalence charge-transfer transitions in nanocrystalline CoFe2-xMxO4 (M=Mn, Al, Sc) thin films. Phys. Rev. B 68, 024426 (2003). https://doi.org/10.1103/PhysRevB.68.024426

    Article  CAS  Google Scholar 

  55. B.S. Holinsworth, C. Harms, S. Fan, D. Mazumdar, A. Gupta, S.A. McGill, J.L. Musfeldt, Magnetic field control of charge excitations in CoFe2O4. Apl. Mater. 6, 066110 (2018). https://doi.org/10.1063/1.5021792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Y.A. Gromova, V.G. Maslov, M.A. Baranov, R. Serrano-García, V.A. Kuznetsova, F. Purcell-Milton, Y.K. Gun’ko, A.V. Baranov, A.V. Fedorov, Magnetic and optical properties of isolated and aggregated CoFe2O4 superparamagnetic nanoparticles studied by MCD. J. Phys. Chem. C 122, 11491–11497 (2018). https://doi.org/10.1021/acs.jpcc.8b00829

    Article  CAS  Google Scholar 

  57. S. Wang, H. Onoda, J. Harbovsky, H. Yanagihara, J. Inoue, T. Ishibashi, Magneto-optical spectroscopy of epitaxial CoxFe3-xO4 (001) thin films. J. Magn. Soc. Jap. 47, 137–143 (2023). https://doi.org/10.3379/msjmag.2311R001

    Article  CAS  Google Scholar 

  58. Y. Iwasaki, T. Fukumura, H. Kimura, A. Ohkubo, T. Hasegawa, Y. Hirose, T. Makino, K. Ueno, M. Kawasaki, High-throughput screening of ultraviolet–visible magnetooptical properties of spinel ferrite (Zn, Co)Fe2O4 solid solution epitaxial film by a composition-spread approach. Appl. Phys. Exp. 3, 103001 (2010). https://doi.org/10.1143/APEX.3.103001

    Article  CAS  Google Scholar 

  59. .A.K. Zvezdin, V.A. Kotov, Modern magnetooptics and magnetooptical materials. (Taylor & Francis Group, New York 1997). https://books.google.ru/books?id=hQ7Xk7MToRoC&printsec=frontcover&hl=ru#v=onepage&q&f=false.

  60. E. Prince, Neutron diffraction observation of heat treatment in cobalt ferrite. Phys. Rev. 102, 674–676 (1956). https://doi.org/10.1103/PhysRev.102.674

    Article  CAS  Google Scholar 

  61. H.L. Yakel, Determination of the cation site-occupation parameter in a cobalt ferrite from Synchrotron-Radiation diffraction data. J. Phys. Chem. Solids 41, 1097–1104 (1980). https://doi.org/10.1016/0022-3697(80)90065-7

    Article  CAS  Google Scholar 

  62. J.W.D. Martens, W.L. Peeters, M. Erman, An ellipsometric and magneto-optical study of cobalt ferrite single crystals. Sol. State Commun. 41, 667–669 (1982). https://doi.org/10.1016/0038-1098(82)90727-X

    Article  CAS  Google Scholar 

  63. A. Moskvin, Charge transfer transitions and circular magnetooptics in ferrites. Magnetochemistry 8, 81 (2022). https://doi.org/10.3390/magnetochemistry8080081

    Article  CAS  Google Scholar 

  64. V. Zviagin, P. Richter, T. Bontgen, M. Lorenz, M. Ziese, D.R.T. Zahn, G. Salvan, M. Grundmann, R. Schmidt-Grund, Comparative study of optical and magneto-optical properties of normal, disordered, and inverse spinel-type oxides. Phys. Status Solidi B 253, 429–436 (2016). https://doi.org/10.1002/pssb.201552361

    Article  CAS  Google Scholar 

  65. J.W.D. Martens, W.L. Peeters, P.Q.J. Nederpel, M. Erman, The polar magnetooptical Kerr effect and the dielectric tensor elements of CoFe2−xAlxO4 0.1≤x≤1 in the photon energy range 0.65≤hν≤4.5 eV. J. Appl. Phys. 55, 1100–1104 (1984). https://doi.org/10.1063/1.333199

    Article  CAS  Google Scholar 

  66. .D.T. Sviridov, R.K. Sviridova, Y.F. Smirnov, Optical spectra of the transition metal ions in crystals. (Nauka, Moscow 1976)

  67. A.H. Weakliem, Optical Spectra of Ni2+, Co2+, and Cu2+ in tetrahedral sites in crystals. J. Chem. Phys. 36, 2117–2140 (1962). https://doi.org/10.1063/1.1732840

    Article  CAS  Google Scholar 

  68. T. Schwab, M. Niedermaier, G. Zickler, M. Oncak, D. Oliver, Isolated cobalt ions embedded in magnesium oxide nanostructures: spectroscopic properties and redox activity. Chem. Eur. J. 26, 16049–16056 (2020). https://doi.org/10.1002/chem.202002817

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Magnetization measurements were carried out at the Krasnoyarsk Regional Center of Research Equipment of the Federal Research Center “Krasnoyarsk Science Center SB RAS.” The authors also thank the Laboratory of Electron Microscopy of the Siberian Federal University Joint Scientific Center for assistance in conducting the electron microscopy measurements.

Funding

The research was carried out within the state assignment of Kirensky Institute of Physics. PT is thankful to DST-SERB TARE fellowship vide Sanction Order No TAR/2022/000414. AT and PT would also like to acknowledge the support provided under the DST-FIST Grant No. SR/FST/PS-I/2018/48 of Govt. of India.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Atul Thakur, Irina Edelman, and Sergey Ovchinnikov; supervision: Atul Thakur and Irina Edelman; writing—review & editing: Atul Thakur and Sergey Ovchinnikov; writing—original draft: Irina Edelman; Methodology: Dmitry Petrov; Investigation: Dmitry Petrov (magnetic circular dichroism), Sergey Zharkov (transmission electron microscopy), Yuri Knyazev (Mössbauer effect), and Aleksander Sukhachev (magnetization); Visualization, Project administration, and Data curation: Preeti Thakur; Validation: Sergey Zharkov.

Corresponding author

Correspondence to Dmitriy Petrov.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, A., Edelman, I., Petrov, D. et al. Effect of Co concentration on cation distribution and magnetic and magneto-optical properties of CoxZn1-xFe2O4 nanoparticles synthesized with citrate precursor method. Journal of Materials Research (2024). https://doi.org/10.1557/s43578-024-01442-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/s43578-024-01442-1

Keywords

Navigation