Abstract
Magnetic properties of mixed spinel ferrites are determined, in great extent, by the magnetic cation distribution among tetrahedral and octahedral positions in a crystal. In the case of CoZn-ferrites, most researchers reported a predominant localization of the divalent cobalt ions in octahedral positions. Using the citrate precursor auto-combustion method, we successfully synthesized CoxZn1-xFe2O4 nanoparticles (x changed from 0.0 to 0.5) with an approximately evenly distribution of Co2+ ions between these interstitial positions. Fe3+ ions are localized preferably in octahedral positions. This type of 3d-ion distribution predetermined the combination of the large saturation magnetization and very low coercive field of the nanoparticles, which may be of importance for applications. MCD spectra of CoxZn1-xFe2O4 nanoparticles are studied here for the first time. Revealed intense MCD peak at 1.75 eV corresponds to the emission wavelength (710 nm) of some lasers, e.g., ALP-710 nm (NKT Photonics, Denmark) which may be of interest for photonic devices.
Graphical abstract
Similar content being viewed by others
Data availability
The data used to support the finding of this study are included with in the article.
Code availability
No codes were generated or analyzed during the current study.
References
K. Chandramouli, B. Suryanarayana, P.P. Varma, V. Raghavendra, K.A. Emmanuel, P. Taddesse, N. Murali, T.W. Mammo, D. Parajuli, Effect of Cr3+ substitution on dc electrical resistivity and magnetic properties of Cu0.7Co0.3Fe2−xCrxO4 ferrite nanoparticles prepared by sol-gel auto combustion method. Results Phys. 24, 104117 (2021). https://doi.org/10.1016/j.rinp.2021.104117
H.R. Daruvuri, N. Murali, M. Madhu, A. Ramakrishna, D. Parajuli, M.P. Dasari, Effects of Zn2+ substitution on the structural, morphological, DC electrical resistivity, permeability and magnetic properties of Co0.5Cu0.5-xZnxFe2O4 nanoferrite. App. Phys. A (2022). https://doi.org/10.1007/s00339-022-06298-y
D. Parajuli, P. Taddesse, N. Murali, K. Samatha, Correlation between the structural, magnetic, and dc resistivity properties of Co0.5M0.5-xCuxFe2O4 (M = Mg, and Zn) nano ferrites. Appl. Phys. A 128, 58 (2022). https://doi.org/10.1007/s00339-021-05211-3
H.R. Daruvuri, K. Chandu, N. Murali, D. Parajuli, M.P. Dasari, Effect on structural, dc electrical resistivity, and magnetic properties by the substitution of Zn2+ on Co–Cu nano ferrite. Inorganic Chem. Commun. 143, 109794 (2022). https://doi.org/10.1016/j.inoche.2022.109794
R. Thakur, F. Verma, B. Wan, I. Ravelo, S. Edelman, P. Ovchinnikov, Thakur, Investigation of structural, elastic and magnetic properties of Cu2+ ions substituted cobalt nano ferrites. J. Magn. Magn. Mater. 581, 170980 (2023). https://doi.org/10.1016/j.jmmm.2023.170980
D. Hamad, N. Afify, M. Omer, G. Abbady, Structure and magnetic properties of Cd(1–x)CoxFe2O4 stoichiometric nanoferrite system. Ceram. Inter. 49, 13924–13932 (2023). https://doi.org/10.1016/j.ceramint.2022.12.274
K.L.V. Nagasree, B. Suryanarayana, V. Raghavendra, A. Penta, N. Murali, K. Samatha, Cu–Ce substituted cobalt nano ferrite—Structural, morphological, and magnetic behavior prepared by sol-gel auto-combustion. J. Indian Chem. Soc. 100(7), 101025 (2023). https://doi.org/10.1016/j.jics.2023.101025
J.K. Babu, S. Erfan, N. Revathi, K. Vagdevi, G.S. Reddy, M.V.N.V. Sharma, Enhanced magnetic properties of Co0.5Cu0.25Zn0.25Fe2-xCrxO4 nano ferrites. J. Mater. Sci. Mater. Electron. 35, 1441 (2024). https://doi.org/10.1007/s10854-024-13217-9
V.S. Rao, V. Prasad, A.R. Rao, K.A. Kumar, T.M. Mohan, Effect of Zn2+ substitution on DC electrical resistivity and magnetic properties of Mg0.5−xZnxCo0.5Fe2O4 nano ferrite. J. Mater. Sci. Mater. Electron. 35, 1398 (2024). https://doi.org/10.1007/s10854-024-13166-3
M.A. Mousa, A.M. Summan, M.A. Ahmed, A.M. Badawy, Electrical conduction in γ-irradiated and unirradiated Fe3O4, CdFe2O4 and CoxZnl-xFe2O4 (0≤x≤1) ferrites. J. Mater. Sci. 24, 2478–2482 (1989). https://doi.org/10.1007/BF01174515
T. Slatineanu, A.R. Iordan, V. Oancea, M.N. Palamaru, I. Dumitru, C.P. Constantin, O.F. Caltun, Magnetic and dielectric properties of Co–Zn ferrite. Mater. Sci. Eng. B 178, 1040–1047 (2013). https://doi.org/10.1016/j.mseb.2013.06.014
.J.Smit, H.P. Wijn, Ferrites. Physical properties of ferrimagnetic oxides in relation to their technical applications. (Philips’ Techn Libr, Eindhoven, 1959). https://archive.org/details/ferritesphysical0000smit/page/n5/mode/2up
P.A. Vinosha, A. Manikandan, A.S.J. Ceicilia, A. Dinesh, G.F. Nirmala, A.C. Preetha, Y. Slimani, M.A. Almessiered, A. Baykal, B. Xavier, Review on recent advances of zinc substituted cobalt ferrite nanoparticles: synthesis characterization and diverse applications. Ceram. Inter. 47, 10512–10535 (2021). https://doi.org/10.1016/j.ceramint.2020.12.289
P.A. Rao, K.S. Rao, T.R.K.P. Raju, G. Kapusetti, M. Choppadandi, M.C. Varma, K.H. Rao, A systematic study of cobalt-zinc ferrite nanoparticles for self-regulated magnetic hyperthermia. J. Alloys Compd.oys Compd. 794, 60–67 (2019). https://doi.org/10.1016/j.jallcom.2019.04.242
A.S. Kamzin, I.M. Obaidat, V.G. Semenov, V. Narayanaswamy, I.A. Al-Omari, B. Issa, I.V. Buryanenko, Development and characterization of magnetric nanoparticles Co1−xZnxFe2O4 (0≤x≤0.6) for biomedical applications. Phys. Sol. St. 65, 482–496 (2023). https://doi.org/10.21883/FTT.2023.03.54749.544
A.V. Motorzhina, V.K. Belyaev, V.G. Kolesnikova, S. Jovanovic, L.V. Panina, K.V. Levada, Zinc-doped gold/cobalt ferrite nanoparticles in studying the cytotoxic effect on t-lymphoblastic leukemia cells. Nanobiotechnol. Rep. 17, 436–443 (2022). https://doi.org/10.1134/S2635167622030120
P. Veverka, L. Kubíckova, Z. Jirak, V. Herynek, M. Veverka, O. Kaman, Temperature and field dependences of transverse relaxivity of Co–Zn ferrite nanoparticles coated with silica: The role of magnetic properties and different regimes. Mater. Chem. Phys. 260, 124178 (2021). https://doi.org/10.1016/j.matchemphys.2020.124178
Y.S. Haiduk, E.V. Korobko, K.A. Shevtsova, D.A. Kotsikau, I.A. Svito, A.E. Usenka, D. Ivashenkoa, A. Fakhmi, V.V. Pankov, Synthesis, structure and magnetic properties of cobalt-zinc nanoferrite for magnetorheological liquids. Cond. Mat. Interph. 22, 28–38 (2020). https://doi.org/10.17308/kcmf.2020.22/2526
A. Omelyanchik, K. Levada, S. Pshenichnikov, M. Abdolrahim, M. Baricic, A. Kapitunova, A. Galieva, S. Sukhikh, L. Astakhova, S. Antipov, B. Fabiano, D. Peddis, V. Rodionova, Green synthesis of Co–Zn spinel ferrite nanoparticles: magnetic and intrinsic antimicrobial properties. Materials 13, 5014 (2020). https://doi.org/10.3390/ma13215014
O.K. Mmelesi, N. Masunga, A. Kuvarega, T.T. Nkambule, B.B. Mamba, K.K. Kefeni, Cobalt ferrite nanoparticles and nanocomposites: Photocatalytic, antimicrobial activity and toxicity in water treatment. Mater. Sci. Semicond. Process. 123, 105523 (2021). https://doi.org/10.1016/j.mssp.2020.105523
T. Tsoncheva, R. Ivanova, N. Velinov, D. Kovacheva, I. Spassova, D. Karashanova, N. Petrov, Design and catalytic behavior of hosted in activated carbon foam CoxZn1-xFe2O4. Symmetry 13, 1532 (2021). https://doi.org/10.3390/sym13081532
R. Sagayaraj, S. Aravazhi, G. Chandrasekaran, Review on structural and magnetic properties of (Co–Zn) ferrite nanoparticles. Int. Nano. Lett. 11, 307–319 (2021). https://doi.org/10.1007/s40089-021-00343-z
G. Márquez, V. Sagredo, R. Guillén-Guillén, G. Attolini, F. Bolzoni, Calcination effects on the crystal structure and magnetic properties of CoFe2O4 nanopowders synthesized by the coprecipitation method. Revista Mexicana de Física 66, 251–257 (2020). https://doi.org/10.31349/RevMexFis.66.251
T.A.S. Ferreira, J.C. Waerenborgh, M.H.R.M. Mendonça, M.R. Nunes, F.M. Costa, Structural and morphological characterization of FeCo2O4 and CoFe2O4 spinels prepared by a coprecipitation method. Sol. State Sci. 5, 383–392 (2003). https://doi.org/10.1016/S1293-2558(03)00011-6
C. Yao, Q. Zeng, G.F. Goya, T. Torres, J. Liu, H. Wu, M. Ge, Y. Zeng, Y. Wang, J.Z. Jiang, ZnFe2O4 nanocrystals: synthesis and magnetic properties. J. Phys. Chem. C 111, 12274–12278 (2007). https://doi.org/10.1021/jp0732763
R. Ramadan, M.K. Ahmed, V. Uskokovic, Magnetic, microstructural and photoactivated antibacterial features of nanostructured Co-Zn ferrites of different chemical and phase compositions. J. All. Comp. 856, 157013 (2021). https://doi.org/10.1016/j.jallcom.2020.157013
F. Gozuak, Y. Koseoglu, A. Baykal, H. Kavasa, Synthesis and characterization of CoxZn1-xFe2O4 magnetic nanoparticles via a PEG-assisted route. J. Magn. Magn. Mater. 321, 2170–2177 (2009). https://doi.org/10.1016/j.jmmm.2009.01.008
S.G.C. Fonseca, L.S. Neiva, M.A.R. Bonifácio, P.R.C. Santos, U.C. Silva, J.B.L. Oliveira, Tunable magnetic and electrical properties of cobalt and zinc ferrites Co1-xZnxFe2O4 synthesized by combustion route. Mater. Res. 21, e20170861 (2018). https://doi.org/10.1590/1980-5373-MR-2017-0861
P.A. Asogekar, S.K. Gaonkar, A. Kumar, V.M.S. Verenkar, Influence of Co over magnetically benign Zn ferrite system and study of its structural, dielectric, superparamagnetic and antibacterial efficacy. Mater. Res. Bull. 141, 111330 (2021). https://doi.org/10.1016/j.materresbull.2021.111330
T. Tatarchuk, M. Bououdina, W. Macyk, O. Shyichuk, N. Paliychuk, I. Yaremiy, B. Al-Najar, M. Pacia, Structural, optical, and magnetic properties of Zn-doped CoFe2O4 nanoparticles. Nanoscale Res. Lett. 12, 141 (2017). https://doi.org/10.1186/s11671-017-1899-x
D. Chahar, S. Taneja, P. Thakur, A. Thakur, Remarkable resistivity and improved dielectric properties of Co–Zn nanoferrites for high frequency applications. J. Alloys. Comp. 843, 155681 (2020). https://doi.org/10.1016/j.jallcom.2020.155681
I. Sharifi, H. Shokrollahi, Nanostructural, magnetic and Mössbauer studies of nanosized Co1−xZnxFe2O4 synthesized by coprecipitation. J. Magn. Magn. Mater. 324, 2397–2403 (2012). https://doi.org/10.1016/j.jmmm.2012.03.00
R.D. Shannon, C.T. Prewitt, Effective ionic radii in oxides and fluorides. Acta Crystallogr. Section B: Struct. Sci Crystal Eng. Mat. 25, 925–946 (1969). https://doi.org/10.1107/S0567740869003220
C.N. Chinnasamy, A. Narayanasamy, N. Ponpandian, K. Chattopadhyay, The influence of Fe3+ ions at tetrahedral sites on the magnetic properties of nanocrystalline ZnFe2O4. Mater. Sci. Eng. A 304–306, 983–987 (2001). https://doi.org/10.1016/S0921-5093(00)01611-7
F.S. Li, L. Wang, J.B. Wang, Q.G. Zhou, X.Z. Zhou, H.P. Kunkel, G. Williams, Site preference of Fe in nanoparticles of ZnFe2O4. J. Magn. Magn. Mater. 268, 332–339 (2004). https://doi.org/10.1016/S0304-8853(03)00544-4
T. Tatarchuk, A. Shyichuk, Z. Sojka, J. Gryboś, M. Naushad, V. Kotsyubynsky, M. Kowalska, S. Kwiatkowska-Marks, N. Danyliuk, Green synthesis, structure, cations distribution and bonding characteristics of superparamagnetic cobalt-zinc ferrites nanoparticles for Pb(II) adsorption and magnetic hyperthermia applications. J. Mol. Liquids 328, 115375 (2021). https://doi.org/10.1016/j.molliq.2021.115375
S.S. Jadhav, S.E. Shirsath, B.G. Toksha, S.M. Patange, S.J. Shukla, K.M. Jadhav, Structural properties and cation distribution of Co–Zn nanoferrites. Int. J. Modern. Phys. B 23, 5629–5638 (2009). https://doi.org/10.1142/S021797920905225X
G. Fan, J. Tong, F. Li, Visible-light-induced photocatalyst based on cobalt-doped zinc ferrite nanocrystals. Ind. Eng. Chem. Res. 51, 13639–13647 (2012). https://doi.org/10.1021/ie201933g
W.S. Mohamed, M. Alzaid, M.S.M. Abdelbaky, Z. Amghouz, S. García-Granda, A.M. Abu-Dief, Impact of Co2+ substitution on microstructure and magnetic properties of CoxZn1-xFe2O4 nanoparticles. Nanomaterials 9, 1602 (2019). https://doi.org/10.3390/nano9111602
R.S. Yadav, I. Kuritka, J. Vilcakova, P. Urbanek, M. Machovsky, M. Masar, M. Holek, Structural, magnetic, optical, dielectric, electrical and modulus spectroscopic characteristics of ZnFe2O4 spinel ferrite nanoparticles synthesized via honey-mediated sol-gel combustion method. J. Phys. Chem. Sol. 110, 87–99 (2017). https://doi.org/10.1016/j.jpcs.2017.05.029
R.K. Ahrenkiel, T.J. Coburn, D. Pearlman, E. Carnall, T.W. Martin, S.L. Lyu, A new class of room-temperature magneto-optic insulators: the cobalt ferrites. AIP Conf. Proc. 24, 186 (1975). https://doi.org/10.1063/1.30040
.G.S. Krinchik, A.P. Khrebtov, A.A. Askochenski, E.M. Speranskaya, S.A. Belyaev, Magneto-optical spectra of 3d ions in spinel ferrites and weak ferromagnets. Zh. Eksp. Teor. Fiz. 72, 699–711; Sov. Phys. JETP 45, 366–372 (1977). http://jetp.ras.ru/cgi-bin/dn/e_045_02_0366.pdf
.G.S. Krinchik, K.M. Mukimov, S.M. Sharipov, A.P. Khrebtov, E.M. Speranskaya, The permittivity tensor and increase in the transmittance of the spinel ferrites upon their conversion into single-sublattice structures. Zh. Eksp. Teor. Fiz. 76, 2126–2136; Sov. Phys. JETP 49, 1074–1079 (1979). http://jetp.ras.ru/cgi-bin/dn/e_049_06_1074.pdf.
Y. Yamazaki, T. Namikawa, K. Suzuki, G. Oda, Preparation of CoZn-ferrite thin films and their magneto-optic properties. IEEE Trans. Magn. 23, 3320–3322 (1987). https://doi.org/10.1109/TMAG.1987.1065412
L. Stichauer, G. Gavoille, Z. Simsa, Optical and magneto-optical properties of nanocrystalline cobalt ferrite films. J. Appl. Phys. 79, 3645–3650 (1996). https://doi.org/10.1063/1.361192
W.F.J. Fontijn, P.J. van der Zaag, R. Metselaar, On the origin of the magneto-optical effects in Li, Mg, Ni, and Co ferrite. J. Appl. Phys. 83, 6765–6767 (1998). https://doi.org/10.1063/1.367992
W.F.J. Fontijn, P.J. Zaag, L.F. Fiener, R. Metselaar, M.A.C. Devillers, A consistent interpretation of the magneto-optical spectra of spinel type ferrites. J. Appl. Phys. 85, 5100–5105 (1999). https://doi.org/10.1063/1.369091
K.J. Kim, H.S. Lee, M.H. Lee, S.H. Lee, Comparative magneto-optical investigation of d–d charge–transfer transitions in Fe3O4, CoFe2O4, and NiFe2O4. J. Appl. Phys. 91, 9974–9977 (2002). https://doi.org/10.1063/1.1480482
C. Himcinschi, I. Vrejoiu, G. Salvan, M. Fronk, A. Talkenberger, D.R.T. Zahn, D. Rafaja, J. Kortus, Optical and magneto-optical study of nickel and cobalt ferrite epitaxial thin films and submicron structures. J. Appl. Phys. 113, 084101 (2013). https://doi.org/10.1063/1.4792749
F. Choueikani, D. Jamon, S. Neveu, M.F. Blanc-Mignon, Y. Lefkir, F. Royer, Self-biased magneto-optical films based on CoFe2O4–silica nanocomposite. J. Appl. Phys. 129, 023101 (2021). https://doi.org/10.1063/5.0032620
E. Lišková-Jakubisová, Š Višňovský, P. Široký, D. Hrabovský, J. Pištora, S.C. Sahoo, S. Prasad, N. Venkataramani, M. Bohra, R. Krishnan, Nanocrystalline zinc ferrite films studied by magneto-optical spectroscopy. J. App. Phys. 117, 17B726 (2015). https://doi.org/10.1063/1.4916936
W.D. Martens, W.L. Peeters, H.M. Noort, M. Erman, Optical, magneto-optical and Mössbauer spectroscopy on Co3+ substituted cobalt ferrite. J. Phys. Chem. Solids 46, 411–416 (1985). https://doi.org/10.1016/0022-3697(85)90104-0
S.J. Lee, S.H. Song, C.C. Lo, S.T. Aldini, D.C. Jiles, Magneto-optic properties of CoFe2−xGaxO4. J. Appl. Phys. 101, 09C502 (2007). https://doi.org/10.1063/1.26939535
B. Zhou, Y.W. Zhang, Y.J. Yu, C.S. Liao, C.H. Yan, Correlation between structure and intervalence charge-transfer transitions in nanocrystalline CoFe2-xMxO4 (M=Mn, Al, Sc) thin films. Phys. Rev. B 68, 024426 (2003). https://doi.org/10.1103/PhysRevB.68.024426
B.S. Holinsworth, C. Harms, S. Fan, D. Mazumdar, A. Gupta, S.A. McGill, J.L. Musfeldt, Magnetic field control of charge excitations in CoFe2O4. Apl. Mater. 6, 066110 (2018). https://doi.org/10.1063/1.5021792
Y.A. Gromova, V.G. Maslov, M.A. Baranov, R. Serrano-García, V.A. Kuznetsova, F. Purcell-Milton, Y.K. Gun’ko, A.V. Baranov, A.V. Fedorov, Magnetic and optical properties of isolated and aggregated CoFe2O4 superparamagnetic nanoparticles studied by MCD. J. Phys. Chem. C 122, 11491–11497 (2018). https://doi.org/10.1021/acs.jpcc.8b00829
S. Wang, H. Onoda, J. Harbovsky, H. Yanagihara, J. Inoue, T. Ishibashi, Magneto-optical spectroscopy of epitaxial CoxFe3-xO4 (001) thin films. J. Magn. Soc. Jap. 47, 137–143 (2023). https://doi.org/10.3379/msjmag.2311R001
Y. Iwasaki, T. Fukumura, H. Kimura, A. Ohkubo, T. Hasegawa, Y. Hirose, T. Makino, K. Ueno, M. Kawasaki, High-throughput screening of ultraviolet–visible magnetooptical properties of spinel ferrite (Zn, Co)Fe2O4 solid solution epitaxial film by a composition-spread approach. Appl. Phys. Exp. 3, 103001 (2010). https://doi.org/10.1143/APEX.3.103001
.A.K. Zvezdin, V.A. Kotov, Modern magnetooptics and magnetooptical materials. (Taylor & Francis Group, New York 1997). https://books.google.ru/books?id=hQ7Xk7MToRoC&printsec=frontcover&hl=ru#v=onepage&q&f=false.
E. Prince, Neutron diffraction observation of heat treatment in cobalt ferrite. Phys. Rev. 102, 674–676 (1956). https://doi.org/10.1103/PhysRev.102.674
H.L. Yakel, Determination of the cation site-occupation parameter in a cobalt ferrite from Synchrotron-Radiation diffraction data. J. Phys. Chem. Solids 41, 1097–1104 (1980). https://doi.org/10.1016/0022-3697(80)90065-7
J.W.D. Martens, W.L. Peeters, M. Erman, An ellipsometric and magneto-optical study of cobalt ferrite single crystals. Sol. State Commun. 41, 667–669 (1982). https://doi.org/10.1016/0038-1098(82)90727-X
A. Moskvin, Charge transfer transitions and circular magnetooptics in ferrites. Magnetochemistry 8, 81 (2022). https://doi.org/10.3390/magnetochemistry8080081
V. Zviagin, P. Richter, T. Bontgen, M. Lorenz, M. Ziese, D.R.T. Zahn, G. Salvan, M. Grundmann, R. Schmidt-Grund, Comparative study of optical and magneto-optical properties of normal, disordered, and inverse spinel-type oxides. Phys. Status Solidi B 253, 429–436 (2016). https://doi.org/10.1002/pssb.201552361
J.W.D. Martens, W.L. Peeters, P.Q.J. Nederpel, M. Erman, The polar magnetooptical Kerr effect and the dielectric tensor elements of CoFe2−xAlxO4 0.1≤x≤1 in the photon energy range 0.65≤hν≤4.5 eV. J. Appl. Phys. 55, 1100–1104 (1984). https://doi.org/10.1063/1.333199
.D.T. Sviridov, R.K. Sviridova, Y.F. Smirnov, Optical spectra of the transition metal ions in crystals. (Nauka, Moscow 1976)
A.H. Weakliem, Optical Spectra of Ni2+, Co2+, and Cu2+ in tetrahedral sites in crystals. J. Chem. Phys. 36, 2117–2140 (1962). https://doi.org/10.1063/1.1732840
T. Schwab, M. Niedermaier, G. Zickler, M. Oncak, D. Oliver, Isolated cobalt ions embedded in magnesium oxide nanostructures: spectroscopic properties and redox activity. Chem. Eur. J. 26, 16049–16056 (2020). https://doi.org/10.1002/chem.202002817
Acknowledgments
Magnetization measurements were carried out at the Krasnoyarsk Regional Center of Research Equipment of the Federal Research Center “Krasnoyarsk Science Center SB RAS.” The authors also thank the Laboratory of Electron Microscopy of the Siberian Federal University Joint Scientific Center for assistance in conducting the electron microscopy measurements.
Funding
The research was carried out within the state assignment of Kirensky Institute of Physics. PT is thankful to DST-SERB TARE fellowship vide Sanction Order No TAR/2022/000414. AT and PT would also like to acknowledge the support provided under the DST-FIST Grant No. SR/FST/PS-I/2018/48 of Govt. of India.
Author information
Authors and Affiliations
Contributions
Conceptualization: Atul Thakur, Irina Edelman, and Sergey Ovchinnikov; supervision: Atul Thakur and Irina Edelman; writing—review & editing: Atul Thakur and Sergey Ovchinnikov; writing—original draft: Irina Edelman; Methodology: Dmitry Petrov; Investigation: Dmitry Petrov (magnetic circular dichroism), Sergey Zharkov (transmission electron microscopy), Yuri Knyazev (Mössbauer effect), and Aleksander Sukhachev (magnetization); Visualization, Project administration, and Data curation: Preeti Thakur; Validation: Sergey Zharkov.
Corresponding author
Ethics declarations
Conflict of interest
On behalf of all authors, the corresponding author states that there is no conflict of interest.
Ethical approval
Not applicable.
Consent to participate
Not applicable.
Consent for publication
Not applicable.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Thakur, A., Edelman, I., Petrov, D. et al. Effect of Co concentration on cation distribution and magnetic and magneto-optical properties of CoxZn1-xFe2O4 nanoparticles synthesized with citrate precursor method. Journal of Materials Research (2024). https://doi.org/10.1557/s43578-024-01442-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1557/s43578-024-01442-1