Skip to main content
Log in

Fabrication and characterization of nanocomposite hydrogel based N-succinyl chitosan/oxidized tragacanth gum/silver nanoparticles for biomedical materials

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nowadays, there is significant interest in hydrogels that have injectable, self-healing, and antibacterial properties. These features make them highly desirable for use in wound dressings. In this study, a class of biocompatible nanocomposite hydrogels was designed based on oxidized tragacanth gum (OTG), N-succinyl chitosan (NSC), and silver nanoparticles (AgNPs) for biomedical applications. To obtain the nanocomposite hydrogels containing different AgNP content, we utilized silver nanoparticles at concentrations of 4, 6, and 8 mg/mL. The OTG/NSC/Ag hydrogel demonstrated superior mechanical properties compared with the OTG/NSC hydrogel without AgNP. The hydrogels also exhibited rapid gelation ( < 60 s), sufficient swelling capacity, and outstanding injectability. The hemolysis and antibacterial tests demonstrated that the produced hydrogels possess non-hemolytic and antibacterial properties. In addition, the hydrogels loaded with AgNPs exhibited low toxicity to fibroblast cells (L929), thus demonstrating acceptable biocompatibility. These findings indicated that the prepared hydrogels could be utilized as novel wound dressing materials.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study but they can be released further upon request.

Code availability

Not applicable.

References

  1. M.A. dos Santos-Silva, E.T.L. Trajano, F.S. Schanuel, A. Monte-Alto-Costa, Heat delays skin wound healing in mice. Exp. Biol. Med. 242, 258 (2017)

    Article  Google Scholar 

  2. C. Gong, Q. Wu, Y. Wang, D. Zhang, F. Luo, X. Zhao, Y. Wei, Z. Qian, A biodegradable hydrogel system containing curcumin encapsulated in micelles for cutaneous wound healing. Biomaterials 34, 6377 (2013)

    Article  CAS  PubMed  Google Scholar 

  3. L. Fan, H. Yang, J. Yang, M. Peng, J. Hu, Preparation and characterization of chitosan/gelatin/PVA hydrogel for wound dressings. Carbohydr. Polym. 146, 427 (2016)

    Article  CAS  PubMed  Google Scholar 

  4. T.D.P.D.L. Lima, M.F. Passos, Skin wounds, the healing process, and hydrogel-based wound dressings: a short review. J. Biomater. Sci. Polym. Ed. 32, 1910 (2021)

    Article  CAS  PubMed  Google Scholar 

  5. M. Yin, S. Wan, X. Ren, C.C. Chu, Development of inherently antibacterial, biodegradable, and biologically active chitosan/pseudo-protein hybrid hydrogels as biofunctional wound dressings. ACS Appl. Mater. Interfaces 13, 14688 (2021)

    Article  CAS  PubMed  Google Scholar 

  6. E.C. González-Díaz, S. Varghese, Hydrogels as extracellular matrix analogs. Gels. 2, 20 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  7. P. Lin, L. Liu, G. He, T. Zhang, M. Yang, J. Cai, L. Fan, S. Tao, Preparation and properties of carboxymethyl chitosan/oxidized hydroxyethyl cellulose hydrogel. Int. J. Biol. Macromol. 162, 1692 (2020)

    Article  CAS  PubMed  Google Scholar 

  8. H. Tan, C.R. Chu, K.A. Payne, K.G. Marra, Injectable in situ forming biodegradable chitosan–hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials 30, 2499 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. S. Dananjaya, S. Edirisinghe, N.T. Thao, R.S. Kumar, H. Wijerathna, A.Y. Mudiyanselage, M. De Zoysa, D. Choi, Succinyl chitosan gold nanocomposite: preparation, characterization, in vitro and in vivo anticandidal activity. Int. J. Biol. Macromol. 165, 63 (2020)

    Article  CAS  PubMed  Google Scholar 

  10. P. Mukhopadhyay, K. Sarkar, S. Bhattacharya, A. Bhattacharyya, R. Mishra, P.P. Kundu, pH sensitive N-succinyl chitosan grafted polyacrylamide hydrogel for oral insulin delivery. Carbohydr. Polym. 112, 627 (2014)

    Article  CAS  PubMed  Google Scholar 

  11. S. Bashir, Y.Y. Teo, S. Naeem, S. Ramesh, K. Ramesh, pH responsive N-succinyl chitosan/Poly (acrylamide-co-acrylic acid) hydrogels and in vitro release of 5-fluorouracil. PLoS ONE 12, e0179250 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  12. A.A. Bazghaleh, M.A. Dogolsar, J. Barzin, Preparation and characterization of oxidized pectin/N-succinyl chitosan/graphene oxide hydrogels. Cellulose 30, 2165 (2023)

    Article  CAS  Google Scholar 

  13. A.A. Bazghaleh, M.A. Dogolsar, J. Barzin, Development of an injectable self-healing hydrogel based on N-succinyl chitosan/oxidized pectin for biomedical applications. J. Polym. Res. 29, 165 (2022)

    Article  CAS  Google Scholar 

  14. E.A. Kamoun, N-succinyl chitosan–dialdehyde starch hybrid hydrogels for biomedical applications. J. Adv. Res. 7, 69 (2016)

    Article  CAS  PubMed  Google Scholar 

  15. S. Lü, M. Liu, B. Ni, An injectable oxidized carboxymethylcellulose/N-succinyl-chitosan hydrogel system for protein delivery. J. Chem. Eng. 160, 779 (2010)

    Article  Google Scholar 

  16. X. Liu, W. Peng, Y. Wang, M. Zhu, T. Sun, Q. Peng, Y. Zeng, B. Feng, X. Lu, J. Weng, Synthesis of an RGD-grafted oxidized sodium alginate–N-succinyl chitosan hydrogel and an in vitro study of endothelial and osteogenic differentiation. J. Mater. Chem. B. 1, 4484 (2013)

    Article  CAS  PubMed  Google Scholar 

  17. E.L. de Lima, N.F. Vasconcelos, J. da Silva Maciel, F.K. Andrade, R.S. Vieira, J.P.A. Feitosa, Injectable hydrogel based on dialdehyde galactomannan and N-succinyl chitosan: a suitable platform for cell culture. J. Mater. Sci. Mater. Med. 31, 1 (2020)

    Google Scholar 

  18. R.R. Vildanova, N.N. Sigaeva, O.S. Kukovinets, S.V. Kolesov, Preparation and rheological properties of hydrogels based on N-succinyl chitosan and hyaluronic acid dialdehyde. Polym. Test. 96, 107120 (2021)

    Article  CAS  Google Scholar 

  19. K. Hemmati, A. Masoumi, M. Ghaemy, Synthesis and characterization of pH-responsive nanohydrogels as biocompatible drug carriers based on chemically modified tragacanth gum polysaccharide. RSC Adv. 5, 85310 (2015)

    Article  CAS  Google Scholar 

  20. E.N. Zare, P. Makvandi, F.R. Tay, Recent progress in the industrial and biomedical applications of tragacanth gum: a review. Carbohydr. Polym. 212, 450 (2019)

    Article  Google Scholar 

  21. J. Gong, L. Wang, J. Wu, Y. Yuan, R.J. Mu, Y. Du, C. Wu, J. Pang, The rheological and physicochemical properties of a novel thermosensitive hydrogel based on konjac glucomannan/gum tragacanth. LWT. 100, 271 (2019)

    Article  CAS  Google Scholar 

  22. M.E. Taghavizadeh Yazdi, S. Nazarnezhad, S.H. Mousavi, M. Sadegh Amiri, M. Darroudi, F. Baino, S. Kargozar, Gum tragacanth (GT): a versatile biocompatible material beyond borders. Molecules 26, 1510 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  23. R.R. Palem, G. Shimoga, K.K. Rao, S.H. Lee, T.J. Kang, Guar gum graft polymer-based silver nanocomposite hydrogels: synthesis, characterization and its biomedical applications. J. Polym. Res. 27, 1 (2020)

    Article  Google Scholar 

  24. K. Prusty, S.K. Swain, Nano silver decorated polyacrylamide/dextran nanohydrogels hybrid composites for drug delivery applications. Mater. Sci. Eng. C 85, 130 (2018)

    Article  CAS  Google Scholar 

  25. A. Hebeish, M. Hashem, M. Abd El-Hady, S. Sharaf, Development of CMC hydrogels loaded with silver nano-particles for medical applications. Carbohydr. Polym. 92, 407 (2013)

    Article  CAS  PubMed  Google Scholar 

  26. J. Stojkovska, J. Zvicer, B. Obradovic, Preclinical functional characterization methods of nanocomposite hydrogels containing silver nanoparticles for biomedical applications. Appl. Microbiol. Biotechnol. 104, 4643 (2020)

    Article  CAS  PubMed  Google Scholar 

  27. I. Gholamali, M. Asnaashariisfahani, E. Alipour, Silver nanoparticles incorporated in pH-sensitive nanocomposite hydrogels based on carboxymethyl chitosan-poly (vinyl alcohol) for use in a drug delivery system. Regen. Eng. Transl. Med. 6, 138 (2020)

    Article  CAS  Google Scholar 

  28. A. Ounkaew, P. Kasemsiri, K. Jetsrisuparb, H. Uyama, Y.-I. Hsu, T. Boonmars, A. Artchayasawat, J.T. Knijnenburg, P. Chindaprasirt, Synthesis of nanocomposite hydrogel based carboxymethyl starch/polyvinyl alcohol/nanosilver for biomedical materials. Carbohydr. Polym. 248, 116767 (2020)

    Article  CAS  PubMed  Google Scholar 

  29. S. Song, Z. Liu, M.A. Abubaker, L. Ding, J. Zhang, S. Yang, Z. Fan, Antibacterial polyvinyl alcohol/bacterial cellulose/nano-silver hydrogels that effectively promote wound healing. Mater. Sci. Eng. C 126, 112171 (2021)

    Article  CAS  Google Scholar 

  30. S. Bashir, Y.Y. Teo, S. Ramesh, K. Ramesh, M.W. Mushtaq, Rheological behavior of biodegradable N-succinyl chitosan-g-poly (acrylic acid) hydrogels and their applications as drug carrier and in vitro theophylline release. Int. J. Biol. Macromol. 117, 454 (2018)

    Article  CAS  PubMed  Google Scholar 

  31. C.M. Hwang, S. Sant, M. Masaeli, N.N. Kachouie, B. Zamanian, S.-H. Lee, A. Khademhosseini, Fabrication of three-dimensional porous cell-laden hydrogel for tissue engineering. Biofabrication 2, 035003 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  32. M. Zhou, F. Lin, W. Li, L. Shi, Y. Li, G. Shan, Development of nanosilver doped carboxymethyl chitosan-polyamideamine alginate composite dressing for wound treatment. Int. J. Biol. Macromol. 166, 1335 (2021)

    Article  CAS  PubMed  Google Scholar 

  33. K.H. Pelkonen, H. Heinonen-Tanski, O.O. Hänninen, Accumulation of silver from drinking water into cerebellum and musculus soleus in mice. Toxicology 186, 151 (2003)

    Article  CAS  PubMed  Google Scholar 

  34. S. Ghayempour, M. Montazer, M.M. Rad, Encapsulation of Aloe Vera extract into natural tragacanth gum as a novel green wound healing product. Int. J. Biol. Macromol. 93, 344 (2016)

    Article  CAS  PubMed  Google Scholar 

  35. A. Azarniya, E. Tamjid, N. Eslahi, A. Simchi, Modification of bacterial cellulose/keratin nanofibrous mats by a tragacanth gum-conjugated hydrogel for wound healing. Int. J. Biol. Macromol. 134, 280 (2019)

    Article  CAS  PubMed  Google Scholar 

  36. B. Iqbal, N. Muhammad, A. Jamal, P. Ahmad, Z.U.H. Khan, A. Rahim, A.S. Khan, G. Gonfa, J. Iqbal, I.U. Rehman, An application of ionic liquid for preparation of homogeneous collagen and alginate hydrogels for skin dressing. J. Mol. Liq. 243, 720 (2017)

    Article  CAS  Google Scholar 

  37. D. Archana, J. Dutta, P. Dutta, Evaluation of chitosan nano dressing for wound healing: characterization, in vitro and in vivo studies. Int. J. Biol. Macromol. 57, 193 (2013)

    Article  CAS  PubMed  Google Scholar 

  38. Q. Ou, K. Huang, C. Fu, C. Huang, Y. Fang, Z. Gu, J. Wu, Y. Wang, Nanosilver-incorporated halloysite nanotubes/gelatin methacrylate hybrid hydrogel with osteoimmunomodulatory and antibacterial activity for bone regeneration. J. Chem. Eng. 382, 123019 (2020)

    Article  CAS  Google Scholar 

  39. L. Ma, W. Su, Y. Ran, X. Ma, Z. Yi, G. Chen, X. Chen, Z. Deng, Q. Tong, X. Wang, Synthesis and characterization of injectable self-healing hydrogels based on oxidized alginate-hybrid-hydroxyapatite nanoparticles and carboxymethyl chitosan. Int. J. Biol. Macromol. 165, 1164 (2020)

    Article  CAS  PubMed  Google Scholar 

  40. B. Tyliszczak, A. Drabczyk, S. Kudłacik-Kramarczyk, K. Bialik-Wąs, R. Kijkowska, A. Sobczak-Kupiec, Preparation and cytotoxicity of chitosan-based hydrogels modified with silver nanoparticles. Colloids Surf. B Biointerfaces 160, 325 (2017)

    Article  CAS  PubMed  Google Scholar 

  41. H.M. Fahmy, A.M. Mosleh, A. Abd Elghany, E. Shams-Eldin, E.S.A. Serea, S.A. Ali, A.E. Shalan, Coated silver nanoparticles: synthesis, cytotoxicity, and optical properties. RSC Adv. 9, 20118 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. M. Pandian, V. Selvaprithviraj, A. Pradeep, J. Rangasamy, In-situ silver nanoparticles incorporated N, O-carboxymethyl chitosan based adhesive, self-healing, conductive, antibacterial and anti-biofilm hydrogel. Int. J. Biol. Macromol. 188, 501 (2021)

    Article  CAS  PubMed  Google Scholar 

  43. C. Quintero-Quiroz, N. Acevedo, J. Zapata-Giraldo, L.E. Botero, J. Quintero, D. Zárate-Triviño, J. Saldarriaga, V.Z. Pérez, Optimization of silver nanoparticle synthesis by chemical reduction and evaluation of its antimicrobial and toxic activity. Biomater. Res. 23, 27 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  44. H. Chen, J. Cheng, L. Ran, K. Yu, B. Lu, G. Lan, F. Dai, F. Lu, An injectable self-healing hydrogel with adhesive and antibacterial properties effectively promotes wound healing. Carbohydr. Polym. 201, 522 (2018)

    Article  CAS  PubMed  Google Scholar 

  45. C. Liu, L. Yang, L. Qiao, C. Liu, M. Zhang, X. Jian, An injectable and self-healing novel chitosan hydrogel with low adamantane substitution degree. Polym. Int. 68, 1102 (2019)

    Article  CAS  Google Scholar 

  46. J.R. Xavier, T. Thakur, P. Desai, M.K. Jaiswal, N. Sears, E. Cosgriff-Hernandez, R. Kaunas, A.K. Gaharwar, Bioactive nanoengineered hydrogels for bone tissue engineering: a growth-factor-free approach. ACS Nano 9, 3109 (2015)

    Article  CAS  PubMed  Google Scholar 

  47. A.A. Bazghaleh, M.A. Dogolsar, J. Barzin, Development of an injectable self-healing hydrogel based on N-succinyl chitosan/oxidized pectin for biomedical applications. J. Polym. Res. 29, 1 (2022)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Mohammad Taghi Razavi Tousi for his kind assistance with hemolytic testing.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

AAB and MAD conceived and planned the experiments. AAB carried out the experiments. AAB took the lead in writing the manuscript. MAD and JB helped supervise the project. All authors provided critical feedback and helped shape the research and analysis.

Corresponding author

Correspondence to Mojtaba Akbari Dogolsar.

Ethics declarations

Competing interests

The authors declare that they have no conflicts of interest for the submitted work.

Ethical approval

This study doesn’t contain any studies with human or animal subjects perform by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2869 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazghaleh, A.A., Dogolsar, M.A. & Barzin, J. Fabrication and characterization of nanocomposite hydrogel based N-succinyl chitosan/oxidized tragacanth gum/silver nanoparticles for biomedical materials. Journal of Materials Research (2024). https://doi.org/10.1557/s43578-024-01437-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/s43578-024-01437-y

Keywords

Navigation