Skip to main content
Log in

Development of a processing route for the fabrication of thin hierarchically porous copper self-standing structure using direct ink writing and sintering for electrochemical energy storage application

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The present study aims to develop a systematic processing route using direct ink writing (DIW) and pressureless sintering for fabricating hierarchically porous \(\text{ Cu }\) (HP-\(\text{ Cu }\)) electrodes. A 3D printable high particle loading \(\text{ Cu }\) ink \(> 95 {\text{wt}}\%\) with polylactic acid as a binder was prepared. Green \({\text{Cu}}\) samples using optimum value of \(\text{ Cu }\) loading, nozzle diameter, layer height, and printing speed as 97 \({\text{wt}}\%\), 0.2 \(\text{mm}\), 70% and 10 \(\text{mm}/\text{s}\) respectively were fabricated and subsequently sintered. A proper inter-particle bonding with 91% relative density and 215 \(\text{Mpa}\) ultimate compressive strength was achieved. Finally, a proof-of-concept study targeting the fabrication of thin HP-\(\text{ Cu }\) current collector was performed and the pore size of 154 ± 10 µm with a thickness of 200 µm was achieved successfully. Moreover, the prepared sample exhibited the highest coulombic efficiency of 95.86% for more than 400 h at 1 \({\text{mAcm}}^{-2}\) making it a potential candidate for energy storage applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

Not applicable.

References

  1. C. Lamiel, I. Hussain, X. Ma, K. Zhang, Properties, functions, and challenges: current collectors. Mater. Today Chem. (2022). https://doi.org/10.1016/j.mtchem.2022.101152

    Article  Google Scholar 

  2. Z. Lyu et al., Design and manufacture of 3D-printed batteries. Joule (2021). https://doi.org/10.1016/j.joule.2020.11.010

    Article  Google Scholar 

  3. V. Egorov, C. O’Dwyer, Architected porous metals in electrochemical energy storage. Curr. Opin. Electrochem. (2020). https://doi.org/10.1016/j.coelec.2020.02.011

    Article  Google Scholar 

  4. J. Chen et al., Porous metal current collectors for alkali metal batteries. Adv. Sci. (2023). https://doi.org/10.1002/advs.202205695

    Article  Google Scholar 

  5. X. Ma, Z. Jing, C. Feng, M. Qiao, D. Xu, Research and development progress of porous foam-based electrodes in advanced electrochemical energy storage devices: a critical review. Renew. Sustain. Energy Rev. (2023). https://doi.org/10.1016/j.rser.2022.113111

    Article  Google Scholar 

  6. Y. Liu, Y. Zhai, Y. Xia, W. Li, D. Zhao, Recent progress of porous materials in lithium-metal batteries. Small Struct. (2021). https://doi.org/10.1002/sstr.202000118

    Article  Google Scholar 

  7. S. Zhou, I. Usman, Y. Wang, A. Pan, 3D printing for rechargeable lithium metal batteries. Energy Storage Mater. (2021). https://doi.org/10.1016/j.ensm.2021.02.041

    Article  Google Scholar 

  8. H.C. Chu, H.Y. Tuan, High-performance lithium-ion batteries with 1.5 Μm thin copper nanowire foil as a current collector. J. Power. Sources 346, 40–48 (2017). https://doi.org/10.1016/j.jpowsour.2017.02.041

    Article  CAS  Google Scholar 

  9. X. Ma, Z. Liu, H. Chen, Facile and scalable electrodeposition of copper current collectors for high-performance Li-metal batteries. Nano Energy 59, 500–507 (2019). https://doi.org/10.1016/j.nanoen.2019.02.048

    Article  CAS  Google Scholar 

  10. S. Pinilla et al., Additive manufacturing of Li-ion batteries: a comparative study between electrode fabrication processes. Adv. Energy Mater. (2023). https://doi.org/10.1002/aenm.202203747

    Article  Google Scholar 

  11. M. Pei et al., 3D printing of advanced lithium batteries A designing strategy of electrode/electrolyte architectures. J. Mater. Chem. A (2021). https://doi.org/10.1039/d1ta06683h

    Article  Google Scholar 

  12. B. Zhou, A. Bonakdarpour, I. Stoševski, B. Fang, D.P. Wilkinson, Modification of Cu current collectors for lithium metal batteries—a review. Prog. Mater. Sci. (2022). https://doi.org/10.1016/j.pmatsci.2022.100996

    Article  Google Scholar 

  13. S. Jin, Y. Jiang, H. Ji, Y. Yu, Advanced 3D current collectors for lithium-based batteries. Adv. Mater. (2018). https://doi.org/10.1002/adma.201802014

    Article  PubMed  PubMed Central  Google Scholar 

  14. T.J. Horn, D. Gamzina, Additive manufacturing of copper and copper alloys, in Additive Manufacturing Processes. ed. by D.L. Bourell, W. Frazier, H. Kuhn, M. Seifi (ASM International, Ohio, 2020), pp.388–418

    Chapter  Google Scholar 

  15. T.Q. Tran et al., 3D printing of highly pure copper. Metals (2019). https://doi.org/10.3390/met9070756

    Article  Google Scholar 

  16. I.A. Polozov, E.V. Borisov, V.S. Sufiiarov, A.A. Popovich, Selective laser melting of copper alloy. Mater. Phys. Mech. 43(1), 65–71 (2020). https://doi.org/10.18720/MPM.4312020_8

    Article  CAS  Google Scholar 

  17. D.A. Ramirez et al., Open-cellular copper structures fabricated by additive manufacturing using electron beam melting. Mater. Sci. Eng. A 528(16–17), 5379–5386 (2011). https://doi.org/10.1016/j.msea.2011.03.053

    Article  CAS  Google Scholar 

  18. H. Miyanaji, D. Ma, M.A. Atwater, K.A. Darling, V.H. Hammond, C.B. Williams, Binder jetting additive manufacturing of copper foam structures. Addit. Manuf. 32, 100960 (2020). https://doi.org/10.1016/j.addma.2019.100960

    Article  CAS  Google Scholar 

  19. G.J.H. Lim et al., Robust pure copper framework by extrusion 3D printing for advanced lithium metal anodes. J Mater Chem A Mater 8(18), 9058–9067 (2020). https://doi.org/10.1039/d0ta00209g

    Article  CAS  Google Scholar 

  20. S. Kolli et al., Process optimization and characterization of dense pure copper parts produced by paste-based 3D micro-extrusion. Addit. Manuf. 73, 103670 (2023). https://doi.org/10.1016/j.addma.2023.103670

    Article  CAS  Google Scholar 

  21. M. Wei, F. Zhang, W. Wang, P. Alexandridis, C. Zhou, G. Wu, 3D direct writing fabrication of electrodes for electrochemical storage devices. J. Power. Sources (2017). https://doi.org/10.1016/j.jpowsour.2017.04.042

    Article  Google Scholar 

  22. C. Chen et al., 3D printed lithium-metal full batteries based on a high-performance three-dimensional anode current collector. ACS Appl. Mater. Interfaces (2021). https://doi.org/10.1021/acsami.1c03997

    Article  PubMed  PubMed Central  Google Scholar 

  23. A. Mantelli, A. Romani, R. Suriano, M. Levi, S. Turri, Direct ink writing of recycled composites with complex shapes: process parameters and ink optimization. Adv. Eng. Mater. (2021). https://doi.org/10.1002/adem.202100116

    Article  Google Scholar 

  24. H. Shao, D. Zhao, T. Lin, J. He, J. Wu, 3D gel-printing of zirconia ceramic parts. Ceram. Int. 43(16), 13938–13942 (2017). https://doi.org/10.1016/j.ceramint.2017.07.124

    Article  CAS  Google Scholar 

  25. M. Wu et al., Parameter optimization via orthogonal experiment to improve accuracy of metakaolin ceramics fabricated by direct ink writing. Chin. J. Mech. Eng.: Addit. Manuf. Front. 2(4), 100098 (2023). https://doi.org/10.1016/j.cjmeam.2023.100098

    Article  Google Scholar 

  26. X. Chu, X. Tang, W. Chen, Y. Yang, W. Zhou, J. Huang, Direct-ink-write printing performance of zeolite catalysts with porous structures. Ceram. Int. 49(9), 13531–13541 (2023). https://doi.org/10.1016/j.ceramint.2022.12.228

    Article  CAS  Google Scholar 

  27. L. Biasetto, A. Gleadall, V. Gastaldi, Ink tuning for direct Ink writing of planar metallic lattices. Adv. Eng. Mater. (2023). https://doi.org/10.1002/adem.202201858

    Article  Google Scholar 

  28. V.M. Tripathi, P. Sharma, R. Tyagi, Development of a high particle loading novel copper ink for the fabrication of a three-dimensional hierarchical porous structure using direct ink writing and sintering. J. Porous Mater. (2024). https://doi.org/10.1007/s10934-024-01579-8

    Article  Google Scholar 

  29. X.Y. Teoh, B. Zhang, P. Belton, S.Y. Chan, S. Qi, The effects of solid particle containing inks on the printing quality of porous pharmaceutical structures fabricated by 3D semi-solid extrusion printing. Pharm. Res. 39(6), 1267–1279 (2022). https://doi.org/10.1007/s11095-022-03299-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. E. Demirci, S. Şenaysoy, S.E. Tuğcu, The effect of nozzle diameter and layer thickness on mechanical behaviour of printed pla lattice structures under quasi-static loading. Int J 3D Print. Technol. Digital Ind. 7(1), 105–113 (2023). https://doi.org/10.46519/ij3dptdi.1256993

    Article  Google Scholar 

  31. S. Tang, L. Yang, G. Li, X. Liu, Z. Fan, 3D printing of highly-loaded slurries via layered extrusion forming: parameters optimization and control. Addit. Manuf. 28, 546–553 (2019). https://doi.org/10.1016/j.addma.2019.05.034

    Article  CAS  Google Scholar 

  32. X.B. Cheng et al., Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries. Adv. Mater. 28(15), 2888–2895 (2016). https://doi.org/10.1002/adma.201506124

    Article  CAS  PubMed  Google Scholar 

  33. R. Zhang et al., Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth. Adv. Mater. 28(11), 2155–2162 (2016). https://doi.org/10.1002/adma.201504117

    Article  CAS  PubMed  Google Scholar 

  34. D. Oropeza et al., Porosity control of copper-based alloys via powder bed fusion additive manufacturing for spacecraft applications. J. Porous Mater. (2024). https://doi.org/10.1007/s10934-023-01544-x

    Article  Google Scholar 

  35. G. Singh, P.M. Pandey, Uniform and graded copper open cell ordered foams fabricated by rapid manufacturing: surface morphology, mechanical properties and energy absorption capacity. Mater. Sci. Eng. A (2019). https://doi.org/10.1016/j.msea.2019.138035

    Article  Google Scholar 

  36. B. Bian et al., Application of 3D printed porous copper anode in microbial fuel cells. Front. Energy Res. (2018). https://doi.org/10.3389/fenrg.2018.00050

    Article  Google Scholar 

  37. P. Chen et al., Performance of a thermally regenerative battery with 3D-printed Cu/C composite electrodes: effect of electrode pore size. Ind. Eng. Chem. Res. 59(49), 21286–21293 (2020). https://doi.org/10.1021/acs.iecr.0c03937

    Article  CAS  Google Scholar 

  38. D.K. Mishra, P.M. Pandey, Experimental investigation into the fabrication of green body developed by micro-extrusion-based 3D printing process. Polym. Compos. 41(5), 1986–2002 (2020). https://doi.org/10.1002/pc.25514

    Article  CAS  Google Scholar 

  39. G. Singh, J.M. Missiaen, D. Bouvard, J.M. Chaix, Copper extrusion 3D printing using metal injection moulding feedstock: analysis of process parameters for green density and surface roughness optimization. Addit. Manuf. (2021). https://doi.org/10.1016/j.addma.2020.101778

    Article  Google Scholar 

Download references

Funding

This work is supported by the Department of Science and Technology-Science and Engineering Research Board (DST-SERB), New Delhi, India (Grant reference no. CRG/2023/003836).

Author information

Authors and Affiliations

Authors

Contributions

Vivek Mani Tripathi—writing original draft, investigation, visualization & conceptualization. Pawan Sharma—supervision, conceptualization, writing& editing. Rajnesh Tyagi—supervision, review & editing.

Corresponding author

Correspondence to Pawan Sharma.

Ethics declarations

Conflict of interest

There is no conflict of interest by any author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1275 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathi, V.M., Sharma, P. & Tyagi, R. Development of a processing route for the fabrication of thin hierarchically porous copper self-standing structure using direct ink writing and sintering for electrochemical energy storage application. Journal of Materials Research (2024). https://doi.org/10.1557/s43578-024-01436-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/s43578-024-01436-z

Keywords

Navigation