Abstract
Magnetization reversal in thin cylindrical nanodisks with radius between 20 and 100 nm is investigated with particular emphasis to modulation of disk thickness. The nanodisk is kept 1 nm thin at the center, whereas it gradually thickens to 21 nm at the periphery. The thickness modulation stabilizes the vortex closure state as the ground state in nanodisk for radius as low as 20 nm. An onion state appears at remanence during in-plane magnetization reversal. Nudged elastic band method verifies that the vortex state is highly stable in all the nanodisks. In the nanodisk of 100 nm radius, the vortex state requires an energy of 2677 kT to transit into onion state where kT is thermal energy at room temperature. This stability however reduces with size of nanodisk and the smallest nanodisk of 20 nm radius has to surpass an energy barrier of 120 kT to topple over to onion state.
Graphic abstract
Similar content being viewed by others
Data availability
All data acquired by the authors in this work can be made available on reasonable request to the corresponding authors.
References
V.Z.C. Paes, J. Varalda, P. Schio, J.T. Matsushima, E.C. Pereira, A.J.A. de Oliveira et al., Monte Carlo simulations of magnetization state of ellipsoidal cocu particles in disordered self-assembled arrays. J. Mater. Res. 31, 2058–2064 (2016). https://doi.org/10.1557/jmr.2016.173
R.F.L. Evans, W.J. Fan, P. Chureemart, T.A. Ostler, M.O.A. Ellis, R.W. Chantrell, Atomistic spin model simulations of magnetic nanomaterials. J. Phys.: Condens. Matter 26(10), 103202 (2014). https://doi.org/10.1088/0953-8984/26/10/103202
T. Fischbacher, M. Franchin, G. Bordignon, H. Fangohr, A systematic approach to multiphysics extensions of finite-element-based micromagnetic simulations: Nmag. IEEE Trans. Magn. 43, 2896–2898 (2007). https://doi.org/10.1109/TMAG.2007.893843
Y. Yang, M. Huang, D.G. Jinmei Qian, X. Liang, Tunable Fe3O4 nanorods for enhanced magnetic hyperthermia performance. Sci. Rep. 10, 8331 (2020). https://doi.org/10.1038/s41598-020-65095-w
H. Jung, Y.S. Choi, K.S. Lee, D.S. Han, Y.S. Yu, M.Y. Im et al., Logic operations based on magnetic-vortex-state networks. ACS Nano 6(5), 3712–3717 (2012). https://doi.org/10.1021/nn3000143
A. Barman, S. Mondal, S. Sahoo, A. De, Magnetization dynamics of nanoscale magnetic materials: a perspective. J. Appl. Phys. 128, 170901 (2020). https://doi.org/10.1063/5.0023993
Y.G.V. Galvan, A. Encinas, J.M. Martinez-Huerta, L. Piraux, J. de la Torre Medina, Bistable magnetic nanowires: a new approach to non-volatile memory with single readout and automatic deletion. J. Mater. Res. 39, 1289–1299 (2024). https://doi.org/10.1557/s43578-024-01310-y
A. Muller, M. Bischoff, M.A. Keip, Thin cylindrical magnetic nanodots revisited: variational formulation, accurate solution and phase diagram. J. Magn. Magn. Mater. 586, 171095 (2023). https://doi.org/10.1016/j.jmmm.2023.171095
P.O. Jubert, R. Allenspach, Analytical approach to the single-domain-to-vortex transition in small magnetic disks. Phys. Rev. B 70, 144402 (2004). https://doi.org/10.1103/PhysRevB.70.144402
A. Ehrmann, T. Blachowicz, Vortex and double-vortex nucleation during magnetization reversal in Fe nanodots of different dimensions. J. Magn. Magn. Mater. 475, 727–733 (2019). https://doi.org/10.1016/j.jmmm.2018.12.031
M. Schneider, H. Hoffmann, J. Zweck, Magnetisation reversal of thin submicron elliptical permalloy elements. J. Magn. Magn. Mater. 257, 1–10 (2003). https://doi.org/10.1016/S0304-8853(02)00979-4
A.C. Mishra, R. Giri, Micromagnetic simulation study of magnetization reversal in torus-shaped permalloy nanorings. Int. J. Mod. Phys. B 31, 1750162 (2017). https://doi.org/10.1142/S0217979217501624
R. Sahu, A.C. Mishra, Magnetization reversal and ground states in thin truncated conical nanodisks: analytical and micromagnetic modelling approach. J. Magn. Magn. Mater. 556, 169356 (2022). https://doi.org/10.1016/j.jmmm.2022.169356
C. Vaz, M. Klaui, J. Bland, L.J. Heyderman, C. David, F. Nolting, Fundamental magnetic states of disk and ring elements. Nucl. Inst. Methods Phys. Res. B 246, 13–19 (2006). https://doi.org/10.1016/j.nimb.2005.12.006
P. Landeros, J. Escrig, D. Altbir, M. Bahiana, Jde Castro, Stability of magnetic configurations in nanorings. J. Appl. Phys. 100, 044311 (2006). https://doi.org/10.1063/1.2218997
A.P. Kotti, A.C. Mishra, Magnetization reversal and stability of vortex state in convex shaped cylindrical nanodisks. J. Magn. Magn. Mater. 599, 172102 (2024). https://doi.org/10.1016/j.jmmm.2024.172102
A. Hirohata, K. Yamada, Y. Nakatani, I.L. Prejbeanu, B. Dieny, P. Pirro et al., Review on spintronics: principles and device applications. J. Magn. Magn. Mater. 509, 166711 (2020). https://doi.org/10.1016/j.jmmm.2020.166711
S. Khanal, P. Sherpa, L. Spinu, Study of static and dynamic properties of planar dumbbell shaped structure of ni80fe20. AIP Adv. 9, 125030 (2019). https://doi.org/10.1063/1.5129760
N. Tahir, M. Zelent, R. Gieniusz, M. Krawczyk, A. Maziewski, T. Wojciechowski et al., Magnetization reversal mechanism in patterned (square to wave-like) py antidot lattices. J. Phys. D Appl. Phys. 50, 025004 (2017). https://doi.org/10.1088/1361-6463/50/2/025004
M.G. Goikoetxea, K.Y. Guslienko, M. Rouco, I. Orue, E. Berganza, M. Jaafar et al., Magnetization reversal in circular vortex dots of small radius. Nanoscale 9, 11269–11278 (2017). https://doi.org/10.1039/C7NR02389H
C.D. Moreira, M.G.M.D. Toscano, S.A. Leonel, F. Sato, Decreasing the size limit for a stable magnetic vortex in modified permalloy nanodiscs. J. Magn. Magn. Mater. 443, 252–260 (2017). https://doi.org/10.1016/j.jmmm.2017.07.077
K. Schultz, M. Schultz, Micromagnetic study of equilibrium states in nano hemispheroidal shells. J. Magn. Magn. Mater. (2017). https://doi.org/10.1016/j.jmmm.2017.07.012
Y. Gaididei, A. Goussev, V.P. Kravchuk, O.V. Pylypovskyi, J.M. Robbins, D.D. Sheka et al., Magnetization in narrow ribbons: curvature effects. J. Phys. A: Math. Theor. 50, 385401 (2017). https://doi.org/10.1088/1751-8121/aa8179
X.P. Ma, M.X. Cai, J.H.S. Peisen Li, H.G. Piao, D.H. Kim, Periodic vortex core switching in curved magnetic nanodisk. J. Magn. Magn. Mater. 502, 166481 (2020). https://doi.org/10.1016/j.jmmm.2020.166481
D. Suess, C. Vogler, F. Bruckner, P. Heistracher, C. Abert, A repulsive skyrmion chain as a guiding track for a racetrack memory. AIP Adv. (2018). https://doi.org/10.1063/1.4993957
M.A. Bisotti, D. Cortes-Ortuno, R. Pepper, W. Wang, M. Beg, T. Kluyver et al., Fidimag—a finite difference atomistic and micromagnetic simulation package. J. Open Res. Softw. 6, 22 (2018). https://doi.org/10.5334/jors.223
R. Pulwey, M. Rahm, J. Biberger, D. Weiss, Switching behavior of vortex structures in nanodisks. IEEE Trans. Magn. 37, 2076–2078 (2001). https://doi.org/10.1109/20.951058
D. Cortes-Ortuno, W. Wang, M. Beg, R.A. Pepper, M.A. Bisotti, R. Carey et al., Thermal stability and topological protection of skyrmions in nanotracks. Sci. Rep. 7(1), 4060 (2017). https://doi.org/10.1038/s41598-017-03391-8
H. Naganuma, H. Sato, S. Ikeda, T. Endoh, Micromagnetic simulation of the temperature dependence of the switching energy barrier using string method assuming sidewall damages in perpendicular magnetized magnetic tunnel junctions. AIP Adv. (2020). https://doi.org/10.1063/5.0007499
Acknowledgments
Akhila Priya Kotti would like to thank Ministry of Human Resource Development (MHRD), New Delhi, for providing financial assistance for carrying out this work. The authors would like to express their gratitude toward Dr. Sraban Kumar Mohanty (IIITDM Jabalpur) for extending the computing facilities to carry out this work.
Author information
Authors and Affiliations
Contributions
APK performed all the experimental work, collected, and analyzed the data and wrote the first draft of the manuscript. ACM formulated the idea, supervised the work, and approved the final version of the manuscript.
Corresponding author
Ethics declarations
Conflict of interest
Authors declare that there is no Conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Kotti, A.P., Mishra, A.C. Enhanced stability and decreased size limit for magnetic vortex state in thin permalloy nanodisk by radial modulation of thickness. Journal of Materials Research (2024). https://doi.org/10.1557/s43578-024-01431-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1557/s43578-024-01431-4