Skip to main content
Log in

Enhanced stability and decreased size limit for magnetic vortex state in thin permalloy nanodisk by radial modulation of thickness

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Magnetization reversal in thin cylindrical nanodisks with radius between 20 and 100 nm is investigated with particular emphasis to modulation of disk thickness. The nanodisk is kept 1 nm thin at the center, whereas it gradually thickens to 21 nm at the periphery. The thickness modulation stabilizes the vortex closure state as the ground state in nanodisk for radius as low as 20 nm. An onion state appears at remanence during in-plane magnetization reversal. Nudged elastic band method verifies that the vortex state is highly stable in all the nanodisks. In the nanodisk of 100 nm radius, the vortex state requires an energy of 2677 kT to transit into onion state where kT is thermal energy at room temperature. This stability however reduces with size of nanodisk and the smallest nanodisk of 20 nm radius has to surpass an energy barrier of 120 kT to topple over to onion state.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

All data acquired by the authors in this work can be made available on reasonable request to the corresponding authors.

References

  1. V.Z.C. Paes, J. Varalda, P. Schio, J.T. Matsushima, E.C. Pereira, A.J.A. de Oliveira et al., Monte Carlo simulations of magnetization state of ellipsoidal cocu particles in disordered self-assembled arrays. J. Mater. Res. 31, 2058–2064 (2016). https://doi.org/10.1557/jmr.2016.173

    Article  CAS  Google Scholar 

  2. R.F.L. Evans, W.J. Fan, P. Chureemart, T.A. Ostler, M.O.A. Ellis, R.W. Chantrell, Atomistic spin model simulations of magnetic nanomaterials. J. Phys.: Condens. Matter 26(10), 103202 (2014). https://doi.org/10.1088/0953-8984/26/10/103202

    Article  CAS  PubMed  Google Scholar 

  3. T. Fischbacher, M. Franchin, G. Bordignon, H. Fangohr, A systematic approach to multiphysics extensions of finite-element-based micromagnetic simulations: Nmag. IEEE Trans. Magn. 43, 2896–2898 (2007). https://doi.org/10.1109/TMAG.2007.893843

    Article  Google Scholar 

  4. Y. Yang, M. Huang, D.G. Jinmei Qian, X. Liang, Tunable Fe3O4 nanorods for enhanced magnetic hyperthermia performance. Sci. Rep. 10, 8331 (2020). https://doi.org/10.1038/s41598-020-65095-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. H. Jung, Y.S. Choi, K.S. Lee, D.S. Han, Y.S. Yu, M.Y. Im et al., Logic operations based on magnetic-vortex-state networks. ACS Nano 6(5), 3712–3717 (2012). https://doi.org/10.1021/nn3000143

    Article  CAS  PubMed  Google Scholar 

  6. A. Barman, S. Mondal, S. Sahoo, A. De, Magnetization dynamics of nanoscale magnetic materials: a perspective. J. Appl. Phys. 128, 170901 (2020). https://doi.org/10.1063/5.0023993

    Article  CAS  Google Scholar 

  7. Y.G.V. Galvan, A. Encinas, J.M. Martinez-Huerta, L. Piraux, J. de la Torre Medina, Bistable magnetic nanowires: a new approach to non-volatile memory with single readout and automatic deletion. J. Mater. Res. 39, 1289–1299 (2024). https://doi.org/10.1557/s43578-024-01310-y

    Article  CAS  Google Scholar 

  8. A. Muller, M. Bischoff, M.A. Keip, Thin cylindrical magnetic nanodots revisited: variational formulation, accurate solution and phase diagram. J. Magn. Magn. Mater. 586, 171095 (2023). https://doi.org/10.1016/j.jmmm.2023.171095

    Article  CAS  Google Scholar 

  9. P.O. Jubert, R. Allenspach, Analytical approach to the single-domain-to-vortex transition in small magnetic disks. Phys. Rev. B 70, 144402 (2004). https://doi.org/10.1103/PhysRevB.70.144402

    Article  CAS  Google Scholar 

  10. A. Ehrmann, T. Blachowicz, Vortex and double-vortex nucleation during magnetization reversal in Fe nanodots of different dimensions. J. Magn. Magn. Mater. 475, 727–733 (2019). https://doi.org/10.1016/j.jmmm.2018.12.031

    Article  CAS  Google Scholar 

  11. M. Schneider, H. Hoffmann, J. Zweck, Magnetisation reversal of thin submicron elliptical permalloy elements. J. Magn. Magn. Mater. 257, 1–10 (2003). https://doi.org/10.1016/S0304-8853(02)00979-4

    Article  CAS  Google Scholar 

  12. A.C. Mishra, R. Giri, Micromagnetic simulation study of magnetization reversal in torus-shaped permalloy nanorings. Int. J. Mod. Phys. B 31, 1750162 (2017). https://doi.org/10.1142/S0217979217501624

    Article  CAS  Google Scholar 

  13. R. Sahu, A.C. Mishra, Magnetization reversal and ground states in thin truncated conical nanodisks: analytical and micromagnetic modelling approach. J. Magn. Magn. Mater. 556, 169356 (2022). https://doi.org/10.1016/j.jmmm.2022.169356

    Article  CAS  Google Scholar 

  14. C. Vaz, M. Klaui, J. Bland, L.J. Heyderman, C. David, F. Nolting, Fundamental magnetic states of disk and ring elements. Nucl. Inst. Methods Phys. Res. B 246, 13–19 (2006). https://doi.org/10.1016/j.nimb.2005.12.006

    Article  CAS  Google Scholar 

  15. P. Landeros, J. Escrig, D. Altbir, M. Bahiana, Jde Castro, Stability of magnetic configurations in nanorings. J. Appl. Phys. 100, 044311 (2006). https://doi.org/10.1063/1.2218997

    Article  CAS  Google Scholar 

  16. A.P. Kotti, A.C. Mishra, Magnetization reversal and stability of vortex state in convex shaped cylindrical nanodisks. J. Magn. Magn. Mater. 599, 172102 (2024). https://doi.org/10.1016/j.jmmm.2024.172102

    Article  CAS  Google Scholar 

  17. A. Hirohata, K. Yamada, Y. Nakatani, I.L. Prejbeanu, B. Dieny, P. Pirro et al., Review on spintronics: principles and device applications. J. Magn. Magn. Mater. 509, 166711 (2020). https://doi.org/10.1016/j.jmmm.2020.166711

    Article  CAS  Google Scholar 

  18. S. Khanal, P. Sherpa, L. Spinu, Study of static and dynamic properties of planar dumbbell shaped structure of ni80fe20. AIP Adv. 9, 125030 (2019). https://doi.org/10.1063/1.5129760

    Article  CAS  Google Scholar 

  19. N. Tahir, M. Zelent, R. Gieniusz, M. Krawczyk, A. Maziewski, T. Wojciechowski et al., Magnetization reversal mechanism in patterned (square to wave-like) py antidot lattices. J. Phys. D Appl. Phys. 50, 025004 (2017). https://doi.org/10.1088/1361-6463/50/2/025004

    Article  CAS  Google Scholar 

  20. M.G. Goikoetxea, K.Y. Guslienko, M. Rouco, I. Orue, E. Berganza, M. Jaafar et al., Magnetization reversal in circular vortex dots of small radius. Nanoscale 9, 11269–11278 (2017). https://doi.org/10.1039/C7NR02389H

    Article  Google Scholar 

  21. C.D. Moreira, M.G.M.D. Toscano, S.A. Leonel, F. Sato, Decreasing the size limit for a stable magnetic vortex in modified permalloy nanodiscs. J. Magn. Magn. Mater. 443, 252–260 (2017). https://doi.org/10.1016/j.jmmm.2017.07.077

    Article  CAS  Google Scholar 

  22. K. Schultz, M. Schultz, Micromagnetic study of equilibrium states in nano hemispheroidal shells. J. Magn. Magn. Mater. (2017). https://doi.org/10.1016/j.jmmm.2017.07.012

    Article  Google Scholar 

  23. Y. Gaididei, A. Goussev, V.P. Kravchuk, O.V. Pylypovskyi, J.M. Robbins, D.D. Sheka et al., Magnetization in narrow ribbons: curvature effects. J. Phys. A: Math. Theor. 50, 385401 (2017). https://doi.org/10.1088/1751-8121/aa8179

    Article  Google Scholar 

  24. X.P. Ma, M.X. Cai, J.H.S. Peisen Li, H.G. Piao, D.H. Kim, Periodic vortex core switching in curved magnetic nanodisk. J. Magn. Magn. Mater. 502, 166481 (2020). https://doi.org/10.1016/j.jmmm.2020.166481

    Article  CAS  Google Scholar 

  25. D. Suess, C. Vogler, F. Bruckner, P. Heistracher, C. Abert, A repulsive skyrmion chain as a guiding track for a racetrack memory. AIP Adv. (2018). https://doi.org/10.1063/1.4993957

    Article  Google Scholar 

  26. M.A. Bisotti, D. Cortes-Ortuno, R. Pepper, W. Wang, M. Beg, T. Kluyver et al., Fidimag—a finite difference atomistic and micromagnetic simulation package. J. Open Res. Softw. 6, 22 (2018). https://doi.org/10.5334/jors.223

    Article  CAS  Google Scholar 

  27. R. Pulwey, M. Rahm, J. Biberger, D. Weiss, Switching behavior of vortex structures in nanodisks. IEEE Trans. Magn. 37, 2076–2078 (2001). https://doi.org/10.1109/20.951058

    Article  Google Scholar 

  28. D. Cortes-Ortuno, W. Wang, M. Beg, R.A. Pepper, M.A. Bisotti, R. Carey et al., Thermal stability and topological protection of skyrmions in nanotracks. Sci. Rep. 7(1), 4060 (2017). https://doi.org/10.1038/s41598-017-03391-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. H. Naganuma, H. Sato, S. Ikeda, T. Endoh, Micromagnetic simulation of the temperature dependence of the switching energy barrier using string method assuming sidewall damages in perpendicular magnetized magnetic tunnel junctions. AIP Adv. (2020). https://doi.org/10.1063/5.0007499

    Article  Google Scholar 

Download references

Acknowledgments

Akhila Priya Kotti would like to thank Ministry of Human Resource Development (MHRD), New Delhi, for providing financial assistance for carrying out this work. The authors would like to express their gratitude toward Dr. Sraban Kumar Mohanty (IIITDM Jabalpur) for extending the computing facilities to carry out this work.

Author information

Authors and Affiliations

Authors

Contributions

APK performed all the experimental work, collected, and analyzed the data and wrote the first draft of the manuscript. ACM formulated the idea, supervised the work, and approved the final version of the manuscript.

Corresponding author

Correspondence to Amaresh Chandra Mishra.

Ethics declarations

Conflict of interest

Authors declare that there is no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 150 KB)

Supplementary file 2 (pdf 171 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotti, A.P., Mishra, A.C. Enhanced stability and decreased size limit for magnetic vortex state in thin permalloy nanodisk by radial modulation of thickness. Journal of Materials Research (2024). https://doi.org/10.1557/s43578-024-01431-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/s43578-024-01431-4

Keywords

Navigation