Skip to main content
Log in

On the length scale and rate-dependent mechanical behavior of monolithic (oxy)sulfidic glassy solid-state electrolytes

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In the controlled atmosphere of a dedicated glove box, nanoindentation performed with a diamond Berkovich indenter tip has been used to examine the mechanical behavior of three (oxy)sulfide solid-state electrolytes (SSEs), 70Li2S·(30−x)P2S5·xP2O5 (x = 0, 2, and 5). At a drive frequency of 120 Hz, the elastic modulus is found to be predominantly depth independent over the range of 100 nm to 1 μm and generally insensitive to the varying mol fraction of oxygen (0, 2, and 5%) as well as the imposed strain rates of 0.025, 0.05, and 0.1 1/s. All three SSEs exhibit significant room-temperature creep. Strain burst activity observed during loading (potentially representative of pore collapse or cracking) is attenuated with the addition of oxygen. The hardness is found to be insensitive to the imposed strain rates but varying with depth and oxygen content. The highest oxygen concentration yields the lowest hardness and strongest depth dependence.

Graphical abstract

Nanoindentation of monolithic (oxy)sulfide glass solid-state electrolytes in an inert environment yields rate and depth dependent behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Data availability

Data presented in this manuscript will be made available by the authors upon reasonable request.

References

  1. T.A. Yersak, Y. Zhang, F. Hao, M. Cai, Moisture stability of sulfide solid-state electrolytes. Front. Energy Res. 10, 882508 (2022)

    Article  Google Scholar 

  2. S. Ito, S. Fujiki, T. Yamada, Y. Aihara, Y. Park, T.Y. Kim, S.-W. Baek, J.-M. Lee, S. Doo, N. Machida, A rocking chair type all-solid-state lithium ion battery adopting Li2O–ZrO2 coated LiNi0.8Co0.15Al0.05O2 and a sulfide based electrolyte. J. Power. Sources 248, 943 (2014)

    Article  CAS  Google Scholar 

  3. Y. Kato, S. Hori, T. Saito, K. Suzuki, M. Hirayama, A. Mitsui, M. Yonemura, H. Iba, R. Kanno, High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 1(4), 1 (2016)

    Article  Google Scholar 

  4. J. Buettner-Garrett: Solid Power: Making High-Performance Solid-State Batteries a Reality. In: The Battery Show (Novi, 2016).

  5. K. Homma, M. Yonemura, T. Kobayashi, M. Nagao, M. Hirayama, R. Kanno, Crystal structure and phase transitions of the lithium ionic conductor Li3PS4. Solid State Ionics 182(1), 53 (2011)

    Article  CAS  Google Scholar 

  6. F. Mizuno, A. Hayashi, K. Tadanaga, M. Tatsumisago, New, highly ion-conductive crystals precipitated from Li2S–P2S5 glasses. Adv. Mater. 17(7), 918 (2005)

    Article  CAS  Google Scholar 

  7. R.P. Rao, S. Adams, Studies of lithium argyrodite solid electrolytes for all-solid-state batteries. Phys. Status Solidi (a) 208(8), 1804 (2011)

    Article  CAS  Google Scholar 

  8. S. Boulineau, M. Courty, J.-M. Tarascon, V. Viallet, Mechanochemical synthesis of Li-argyrodite Li6PS5X (X= Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application. Solid State Ionics 221, 1 (2012)

    Article  CAS  Google Scholar 

  9. N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, A lithium superionic conductor. Nat. Mater. 10(9), 682 (2011)

    Article  CAS  PubMed  Google Scholar 

  10. S.W. Martin, Glass and Glass-Ceramic Sulfide and Oxy-Sulfide Solid Electrolytes, in Handbook of Solid State Batteries (World Scientific, Singapore, 2016), p.433

    Google Scholar 

  11. Z.A. Grady, C.J. Wilkinson, C.A. Randall, J.C. Mauro, Emerging role of non-crystalline electrolytes in solid-state battery research. Front. Energy Res. 8, 218 (2020)

    Article  Google Scholar 

  12. T.A. Yersak, J.R. Salvador, N.P. Pieczonka, M. Cai, Dense, melt cast sulfide glass electrolyte separators for Li metal batteries. J. Electrochem. Soc. 166(8), A1535 (2019)

    Article  Google Scholar 

  13. H. GonzalezMalabet, Y. Zhang, J.R. Salvador, R. Schmidt, T. Yersak, Improved thermal stability of oxysulfide glassy solid-state electrolytes. J. Electrochem. Soc. 170(11), 110510 (2023)

    Article  Google Scholar 

  14. L. Porz, T. Swamy, B.W. Sheldon, D. Rettenwander, T. Frömling, H.L. Thaman, S. Berendts, R. Uecker, W.C. Carter, Y.M. Chiang, Mechanism of lithium metal penetration through inorganic solid electrolytes. Adv. Energy Mater. 7(20), 1701003 (2017)

    Article  Google Scholar 

  15. T. Ohtomo, A. Hayashi, M. Tatsumisago, K. Kawamoto, All-solid-state batteries with Li2O-Li2S-P2S5 glass electrolytes synthesized by two-step mechanical milling. J. Solid State Electrochem. 17, 2551 (2013)

    Article  CAS  Google Scholar 

  16. T. Ohtomo, A. Hayashi, M. Tatsumisago, K. Kawamoto, Suppression of H2S gas generation from the 75Li2S·25P2S5 glass electrolyte by additives. J. Mater. Sci. 48, 4137 (2013)

    Article  CAS  Google Scholar 

  17. T. Ohtomo, A. Hayashi, M. Tatsumisago, K. Kawamoto, Glass electrolytes with high ion conductivity and high chemical stability in the system LiI-Li2O-Li2S-P2S5. Electrochemistry 81(6), 428 (2013)

    Article  CAS  Google Scholar 

  18. S. Kalnaus, N.J. Dudney, A.S. Westover, E.G. Herbert, S.A. Hackney, Solid-state batteries: The critical role of mechanics. Science 381(6664), 1 (2023)

    Article  Google Scholar 

  19. D.J. Pereira, M.A. Fernandez, K.C. Streng, X.X. Hou, X. Gao, J.W. Weidner, T.R. Garrick, Accounting for non-ideal, lithiation-based active material volume change in mechano-electrochemical pouch cell simulation. J. Electrochem. Soc. 167(8), 080515 (2020)

    Article  CAS  Google Scholar 

  20. M. So, G. Inoue, R. Hirate, K. Nunoshita, S. Ishikawa, Y. Tsuge, Effect of mold pressure on compaction and ion conductivity of all-solid-state batteries revealed by the discrete element method. J. Power. Sources 508, 230344 (2021)

    Article  CAS  Google Scholar 

  21. M. So, G. Inoue, K. Park, K. Nunoshita, S. Ishikawa, Y. Tsuge, Simulation of the compaction of an all-solid-state battery cathode with coated particles using the discrete element method. J. Power. Sources 530, 231279 (2022)

    Article  CAS  Google Scholar 

  22. R. Koerver, I. Aygün, T. Leichtweiß, C. Dietrich, W. Zhang, J.O. Binder, P. Hartmann, W.G. Zeier, J. Janek, Capacity fade in solid-state batteries: Interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes. Chem. Mater. 29(13), 5574 (2017)

    Article  CAS  Google Scholar 

  23. F. Zhang, Q.-A. Huang, Z. Tang, A. Li, Q. Shao, L. Zhang, X. Li, J. Zhang, A review of mechanics-related material damages in all-solid-state batteries: Mechanisms, performance impacts and mitigation strategies. Nano Energy 70, 104545 (2020)

    Article  CAS  Google Scholar 

  24. C.E. Athanasiou, X. Liu, M.Y. Jin, E. Nimon, S. Visco, C. Lee, M. Park, J. Yun, N.P. Padture, H. Gao, Rate-dependent deformation of amorphous sulfide glass electrolytes for solid-state batteries. Cell Rep. Phys. Sci. 3, 4 (2022)

    Google Scholar 

  25. A. Sakuda, A. Hayashi, Y. Takigawa, K. Higashi, M. Tatsumisago, Evaluation of elastic modulus of Li2S–P2S5 glassy solid electrolyte by ultrasonic sound velocity measurement and compression test. J. Ceram. Soc. Jpn. 121(1419), 946 (2013)

    Article  CAS  Google Scholar 

  26. S. Yu, R.D. Schmidt, R. Garcia-Mendez, E. Herbert, N.J. Dudney, J.B. Wolfenstine, J. Sakamoto, D.J. Siegel, Elastic properties of the solid electrolyte Li7La3Zr2O12 (LLZO). Chem. Mater. 28(1), 197 (2016)

    Article  CAS  Google Scholar 

  27. A. Kato, M. Nose, M. Yamamoto, A. Sakuda, A. Hayashi, M. Tatsumisago, Mechanical properties of sulfide glasses in all-solid-state batteries. J. Ceram. Soc. Jpn. 126(9), 719 (2018)

    Article  CAS  Google Scholar 

  28. W.S. LePage, Y. Chen, E. Kazyak, K.-H. Chen, A.J. Sanchez, A. Poli, E.M. Arruda, M.D. Thouless, N.P. Dasgupta, Lithium mechanics: roles of strain rate and temperature and implications for lithium metal batteries. J. Electrochem. Soc. 166(2), A89 (2019)

    Article  CAS  Google Scholar 

  29. X. Li, B. Bhushan, A review of nanoindentation continuous stiffness measurement technique and its applications. Mater Charact 48(1), 11 (2002)

    Article  CAS  Google Scholar 

  30. E.G. Herbert, W.E. Tenhaeff, N.J. Dudney, G. Pharr, Mechanical characterization of LiPON films using nanoindentation. Thin Solid Films 520(1), 413 (2011)

    Article  CAS  Google Scholar 

  31. W.C. Oliver, G.M. Pharr, Nanoindentation in materials research: past, present, and future. MRS Bull. 35, 1 (2010)

    Article  Google Scholar 

  32. W.C. Oliver, G.M. Pharr, P.S. Phani, Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 33(7), 889 (2018)

    Google Scholar 

  33. J.L. Hay, G.M. Pharr, Instrumented Indentation Testing, in Mechanical Testing and Evaluation, vol. 8 (ASM Handbook, Materials Park, 2000)

    Google Scholar 

  34. E.G. Herbert, S.A. Hackney, N.J. Dudney, P.S. Phani, Nanoindentation of high purity vapor deposited lithium films: The elastic modulus. J. Mater. Res. 33(10), 1335 (2018)

    Article  CAS  Google Scholar 

  35. E.G. Herbert, S.A. Hackney, N.J. Dudney, V. Thole, P.S. Phani, Nanoindentation of high purity vapor deposited lithium films: A mechanistic rationalization of diffusion-mediated flow. J. Mater. Res. 33(10), 1347 (2018)

    Article  CAS  Google Scholar 

  36. E.G. Herbert, S.A. Hackney, N.J. Dudney, V. Thole, P.S. Phani, Nanoindentation of high purity vapor deposited lithium films: A mechanistic rationalization of the transition from diffusion to dislocation-mediated flow. J. Mater. Res. 33(10), 1361 (2018)

    Article  CAS  Google Scholar 

  37. M. Papakyriakou, M. Lu, Y. Liu, Z. Liu, H. Chen, M.T. McDowell, S. Xia, Mechanical behavior of inorganic lithium-conducting solid electrolytes. J. Power. Sources 516, 230672 (2021)

    Article  CAS  Google Scholar 

  38. F.P. McGrogan, T. Swamy, S.R. Bishop, E. Eggleton, L. Porz, X. Chen, Y.-M. Chiang, K.J. Van Vliet, Compliant yet brittle mechanical behavior of Li2S-P2S5 lithium-ion-conducting solid electrolyte. Adv. Energy Mater. 7, 12 (2017)

    Article  Google Scholar 

  39. E.G. Herbert, N.J. Dudney, M. Rochow, V. Thole, S.A. Hackney, On the mechanisms of stress relaxation and intensification at the lithium/solid-state electrolyte interface. J. Mater. Res. 34(21), 3593 (2019)

    Article  CAS  Google Scholar 

  40. Li2S mp-1153. (Materials Project) https://next-gen.materialsproject.org/materials/mp-1153. Accessed 16 May 2024.

  41. W. Buehrer, F. Altorfer, J. Mesot, H. Bill, P. Carron, H. Smith, Lattice dynamics and the diffuse phase transition of lithium sulphide investigated by coherent neutron scattering. J. Phys. Condens. Matter 3(9), 1055 (1991)

    Article  CAS  Google Scholar 

  42. S. Kalnaus, A.S. Westover, M. Kornbluth, E. Herbert, N.J. Dudney, Resistance to fracture in the glassy solid electrolyte LiPON. J. Mater. Res. 36, 787 (2021)

    Article  CAS  Google Scholar 

  43. A. Sakuda, A. Hayashi, M. Tatsumisago, Sulfide solid electrolyte with favorable mechanical property for all-solid-state lithium battery. Sci. Rep. 3(1), 2261 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  44. J. Kováčik, Correlation between Young’s modulus and porosity in porous materials. J. Mater. Sci. Lett. 18(13), 1007 (1999)

    Article  Google Scholar 

  45. T. Yersak, J.R. Salvador, R.D. Schmidt, M. Cai, Hot pressed, fiber-reinforced (Li2S)70(P2S5)30 solid-state electrolyte separators for Li metal batteries. ACS Appl. Energy Mater. 2(5), 3523 (2019)

    Article  CAS  Google Scholar 

  46. R. Garcia-Mendez, J.G. Smith, J.C. Neuefeind, D.J. Siegel, J. Sakamoto, Correlating macro and atomic structure with elastic properties and ionic transport of glassy Li2S-P2S5 (LPS) solid electrolyte for solid-state Li metal batteries. Adv. Energy Mater. 10(19), 2000335 (2020)

    Article  CAS  Google Scholar 

  47. W.C. Oliver, G.M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19(1), 3 (2004)

    Article  CAS  Google Scholar 

  48. W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564 (1992)

    Article  CAS  Google Scholar 

  49. D. Tabor, The Hardness of Metals (Oxford University Press, Oxford, 1951)

    Google Scholar 

  50. K.L. Johnson, The correlation of indentation experiments. J. Mech. Phys. Solids 18(2), 115 (1970)

    Article  Google Scholar 

  51. K.L. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, 1985)

    Book  Google Scholar 

  52. E.G. Herbert, W.C. Oliver, G.M. Pharr, On the measurement of yield strength by spherical indentation. Phil. Mag. 86(33–35), 5521 (2006)

    Article  CAS  Google Scholar 

  53. B.A. Mound, G.M. Pharr, Nanoindentation of fused quartz at loads near the cracking threshold. Exp. Mech. 59, 369 (2018)

    Article  Google Scholar 

  54. C. Xu, Z. Ahmad, A. Aryanfar, V. Viswanathan, J.R. Greer, Enhanced strength and temperature dependence of mechanical properties of Li at small scales and its implications for Li metal anodes. Proc. Natl. Acad. Sci. 114(1), 57 (2017)

    Article  CAS  PubMed  Google Scholar 

  55. G.E. Dieter, Mechanical Metallurgy (McGraw-Hill Book Company Inc, New York, 1961)

    Book  Google Scholar 

  56. A. Bolshakov, G.M. Pharr, Influences of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques. J. Mater. Res. 13, 4 (1998)

    Article  Google Scholar 

Download references

Funding

This work was funded by the Battery Materials Research Program (BMR) in the US Department of Energy’s (DOE) Office of Energy Efficiency and Renewable Energy’s (EERE) Vehicle Technology Office (VTO) (DE-EE0008857). Support for Erik Herbert was provided by the US Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy for the Vehicle Technologies Office’s Advanced Battery Materials Research Program (S. Thompson, Program Manager). Erik was also supported by DOE, under contract DE-AC05-00OR22725 with ORNL, managed by UT-Battelle, LLC.

Author information

Authors and Affiliations

Authors

Contributions

TAY and EGH conceived of work, acquired funding, and prepared the manuscript. YZ prepared the samples. EGH performed the measurements and data analyses.

Corresponding author

Correspondence to Thomas A. Yersak.

Ethics declarations

Competing Interest

The authors have no competing interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Notice: This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (https://www.energy.gov/doe-public-access-plan).

Erik Herbert was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herbert, E.G., Zhang, Y. & Yersak, T.A. On the length scale and rate-dependent mechanical behavior of monolithic (oxy)sulfidic glassy solid-state electrolytes. Journal of Materials Research (2024). https://doi.org/10.1557/s43578-024-01430-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/s43578-024-01430-5

Keywords

Navigation