Skip to main content

Advertisement

Log in

Enhanced efficiency of MoS2/SnO2 nanocomposite as a catalyst for the photodegradation of methylene blue

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this work, the characteristics of MoS2 and its nanocomposite with SnO2 for photocatalytic degradation of methylene blue have been investigated. The MoS2 and MoS2/SnO2 nanocomposites were synthesized by the hydrothermal method. SEM analysis shows the flower-like structure of MoS2 while MoS2/SnO2 nanocomposites shows grain-like structure. The EDX analysis of the MoS2 and MoS2/SnO2 nanocomposites confirm the samples were mainly composed of Mo, S, Sn, and O atoms and the XRD patterns confirm hexagonal and rhombohedral phases, respectively. The FTIR spectra indicate the presence of both hydroxyl and carboxyl functional groups at the sample's surface. The UV–Visible spectroscopy findings witness both samples are being active in the visible range. Further, the band gap estimation through Tauc plot supports the assertion that these materials could be an efficient catalyst for photodegradation. Furthermore, the photodegradation of methylene blue (used as a dye) findings declare the maximum efficiency of 93% by using MoS2/SnO2 nanocomposite as a catalyst.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. S. Han, K. Liu, L. Hu, F. Teng, P. Yu, Y. Zhu, Superior adsorption and regenerable dye adsorbent based on flower-like molybdenum disulfide nanostructure. Sci. Rep. 7(1), 43599 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  2. M. Barreto-Rodrigues, J. Silveira, J.A. Zazo, J.J. Rodriguez, Rodriguez: Synthesis, characterization and application of nanoscale zero-valent iron in the degradation of the azo dye Disperse Red. J. Environ. Chem. Eng. 15(1), 628 (2017)

    Article  Google Scholar 

  3. S. Singh, N. Verma, A. Umar, S.K. Kansal, ZnCdS nanoparticles decorated three-dimensional MoO3 polygonal structure: A novel photocatalyst for enhanced solar light-driven degradation of methyl orange dye. J. Alloys Compd. 997, 174714 (2024)

    Article  CAS  Google Scholar 

  4. V.K. Gupta, R. Jain, A. Nayak, S. Agarwal, M. Shrivastava, Removal of the hazardous dye—Tartrazine by photodegradation on titanium dioxide surface. Mater. Sci. Eng. C 31(5), 1062 (2011)

    Article  CAS  Google Scholar 

  5. M.V. Subbaiah, D.S. Kim, Adsorption of methyl orange from aqueous solution by aminated pumpkin seed powder: kinetics, isotherms, and thermodynamic studies. Ecotoxicol. Environ. Saf. 128, 109 (2016)

    Article  CAS  PubMed  Google Scholar 

  6. B. Ulas, M. Ergun, Biosorption of remazol orange RR from aqueous solution: kinetic, equilibrium and thermodynamic studies. Desal. Water Treatm. 163, 366 (2019)

    Article  Google Scholar 

  7. L. Zheng, C. Wang, Y. Shu, X. Yan, L. Li, Utilization of diatomite/chitosan–Fe (III) composite for the removal of anionic azo dyes from wastewater: equilibrium, kinetics and thermodynamics. Colloids Surf A Physicochem Eng Asp 468, 129 (2015)

    Article  CAS  Google Scholar 

  8. W. Cheah, S. Hosseini, M.A. Khan, T.G. Chuah, T.S. Choong, Acid modified carbon coated monolith for methyl orange adsorption. Chem. Eng. J. 215, 747 (2013)

    Article  Google Scholar 

  9. B.K. Ghosh, S. Hazra, B. Naik, N.N. Ghosh, Preparation of Cu nanoparticle loaded SBA-15 and their excellent catalytic activity in reduction of variety of dyes. Powder Technol. 269, 371 (2015)

    Article  CAS  Google Scholar 

  10. P. Saikia, A.T. Miah, P.P. Das, Highly efficient catalytic reductive degradation of various organic dyes by Au/CeO 2-TiO 2 nano-hybrid. J. Chem. Sci. 129, 81 (2017)

    Article  CAS  Google Scholar 

  11. M.X. Zhu, L. Lee, H.H. Wang, Z. Wang, Removal of an anionic dye by adsorption/precipitation processes using alkaline white mud. J. Hazard. Mater. 149(3), 735 (2007)

    Article  CAS  PubMed  Google Scholar 

  12. X.Z. Li, K.L. Wu, C. Dong, S.H. Xia, Y. Ye, X.W. Wei, Size-controlled synthesis of Ag3PO4 nanorods and their high-performance photocatalysis for dye degradation under visible-light irradiation. Mater. Lett. 130, 97 (2014)

    Article  CAS  Google Scholar 

  13. X. Sun, Y. Zhou, X. Zheng, Comparison of adsorption behaviors of Fe-La oxides co-loaded MgO nanosheets for the removal of methyl orange and phosphate in single and binary systems. J. Environ. Chem. Eng. 8(5), 104252 (2020)

    Article  CAS  Google Scholar 

  14. C. O’neill, A. Lopez, S. Esteves, F.R. Hawkes, D.L. Hawkes, S. Wilcox, Azo-dye degradation in an anaerobic-aerobic treatment system operating on simulated textile effluent. Applied Microbiol. Biotechnol. 53, 249 (2000)

    Article  Google Scholar 

  15. A. Vijeata, G.R. Chaudhary, S. Chaudhary, A. Umar, Biogenic synthesis of highly fluorescent carbon dots using Azadirachta indica leaves: an eco-friendly approach with enhanced photocatalytic degradation efficiency towards Malachite green. Chemosphere 341, 139946 (2023)

    Article  CAS  PubMed  Google Scholar 

  16. V.A. Tran, T.K. Phung, T.K. Vo, T.T. Nguyen, T.A. Nguyen, D.Q. Viet, V.Q. Hieu, T.T. Vo, Solar-light-driven photocatalytic degradation of methyl orange dye over Co3O4–ZnO nanoparticles. Mater. Lett. 284, 128902 (2021)

    Article  Google Scholar 

  17. M. Sharma, S. Sharma, M.S. Akhtar, R. Kumar, A. Umar, A.A. Alkhanjaf, S. Baskoutas, Microorganisms-assisted degradation of Acid Orange 7 dye: a review. Int. J. Environ. Sci. Technol. 21(7), 6133 (2024)

    Article  CAS  Google Scholar 

  18. R. Singh, R.K. Yadav, S. Singh, R. Shahin, A. Umar, A.A. Ibrahim, O. Singh, N.K. Gupta, C. Singh, J.O. Baeg, S. Baskoutas, Nature-inspired polymer photocatalysts for green NADH regeneration and nitroarene transformation. Chemosphere 353, 141491 (2024)

    Article  CAS  PubMed  Google Scholar 

  19. M. Kaur, S. Singh, S.K. Mehta, S.K. Kansal, A. Umar, A.A. Ibrahim, S. Baskoutas, CeO2 quantum dots decorated g-C3N4 nanosheets: a potential scaffold for fluorescence sensing of heavy metals and visible-light driven photocatalyst. J. Alloys Compd. 960, 170637 (2023)

    Article  CAS  Google Scholar 

  20. S.A. Ansari, N. Parveen. Enhanced photocatalytic degradation of organic pollutants using iron lanthanum oxide nanoparticles MatSci Express 1(1), 28–32 (2024). https://doi.org/10.69626/mse.2024.0028

  21. S.A. Ansari, N. Parveen, G.M. Alsulaim, A.A. Ansari, S.A. Alsharif, K.M. Alnahdi, H.A. Alali, V.R. Reddy, Emerging NiO–rGO nanohybrids for antibiotic pollutant degradation under visible-light irradiation. Surfaces Interfaces 40, 103078 (2023)

    Article  CAS  Google Scholar 

  22. C.N. Rao, K. Gopalakrishnan, U. Maitra, Comparative study of potential applications of graphene, MoS2, and other two-dimensional materials in energy devices, sensors, and related areas. ACS Appl. Mater. Interfaces 7(15), 7809 (2015)

    Article  CAS  PubMed  Google Scholar 

  23. K. Gopalakrishnan, S. Sultan, A. Govindaraj, C.N. Rao, Supercapacitors based on composites of PANI with nanosheets of nitrogen-doped RGO, BC1. 5N, MoS2 and WS. Nano Energy 212, 52 (2015)

    Article  Google Scholar 

  24. K. Chang, W. Chen, L-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 5(6), 4720 (2011)

    Article  CAS  PubMed  Google Scholar 

  25. J. Chen, Y. Liao, X. Wan, S. Tie, B. Zhang, S. Lan, X. Gao, A high performance MoO3@ MoS2 porous nanorods for adsorption and photodegradation of dye. J. Solid State Chem. 291, 121652 (2020)

    Article  CAS  Google Scholar 

  26. C. Zhang, H.B. Wu, Z. Guo, X.W. Lou, Facile synthesis of carbon-coated MoS2 nanorods with enhanced lithium storage properties. Electrochem. Commun. 20, 7 (2012)

    Article  CAS  Google Scholar 

  27. M. Remskar, A. Mrzel, M. Virsek, M. Godec, M. Krause, A. Kolitsch, A. Singh, A. Seabaugh, The MoS2 nanotubes with defect-controlled electric properties. Nanoscale Res. Lett. 6, 1 (2011)

    Google Scholar 

  28. I. Wiesel, R. Popovitz-Biro, R. Tenne, Encapsulation of Mo2 C in MoS2 inorganic fullerene-like nanoparticles and nanotubes. Nanoscale 5(4), 1499 (2013)

    Article  CAS  PubMed  Google Scholar 

  29. M.A. Ramos, V. Correa, B. Torres, S. Flores, J.R. Farias Mancilla, R.R. Chianelli, Spherical MoS2 micro particles and their surface dispersion due to addition of cobalt promoters. Rev. Mexicana Física 57(3), 220 (2011)

    CAS  Google Scholar 

  30. Q. Li, J.T. Newberg, E.C. Walter, J.C. Hemminger, R.M. Penner, Polycrystalline molybdenum disulfide (2H− MoS2) nano-and microribbons by electrochemical/chemical synthesis. Nano Lett. 4(2), 277 (2004)

    Article  CAS  Google Scholar 

  31. R. Wei, H. Yang, K. Du, W. Fu, Y. Tian, Q. Yu, S. Liu, M. Li, G. Zou, A facile method to prepare MoS2 with nanoflower-like morphology. Mater. Chem. Phys. 108(2–3), 188 (2008)

    Article  CAS  Google Scholar 

  32. L. Ma, W.X. Chen, H. Li, Y.F. Zheng, Z.D. Xu, Ionic liquid-assisted hydrothermal synthesis of MoS2 microspheres. Mater. Lett. 62(6–7), 797 (2008)

    Article  CAS  Google Scholar 

  33. V. Gupta, R.K. Yadav, A. Umar, A.A. Ibrahim, S. Singh, R. Shahin, R.K. Shukla, D. Tiwary, D.K. Dwivedi, A.K. Singh, A.K. Singh, Highly efficient self-assembled activated carbon cloth-templated photocatalyst for NADH regeneration and photocatalytic reduction of 4-nitro benzyl alcohol. Catalysts 13(4), 666 (2023)

    Article  CAS  Google Scholar 

  34. S.A. Ansari, Elemental semiconductor red phosphorus/ZnO nanohybrids as high performance photocatalysts. Ceram. Int. 49(11), 17746 (2023)

    Article  CAS  Google Scholar 

  35. S. Asaithambi, P. Sakthivel, M. Karuppaiah, K. Balamurugan, R. Yuvakkumar, M. Thambidurai, G. Ravi, Synthesis and characterization of various transition metals doped SnO2@ MoS2 composites for supercapacitor and photocatalytic applications. J. Alloys Comps. 853, 157060 (2021)

    Article  CAS  Google Scholar 

  36. I. Zahariev, M. Piskin, E. Karaduman, D. Ivanova, I. Markova, L. Fachikov. FTIR spectroscopy method for investigation of Co–Ni nanoparticle nanosurface phenomena. J. Chem. Technol. Metall.52(5) (2017). https://openurl.ebsco.com/EPDB%3Agcd%3A2%3A4879698/detailv2?sid=ebsco%3Aplink%3Ascholar&id=ebsco%3Agcd%3A124138612&crl=c

  37. X. Feng, Q. Tang, J. Zhou, J. Fang, P. Ding, L. Sun, L. Shi, Novel mixed–solvothermal synthesis of MoS2 nanosheets with controllable morphologies. Cryst. Res. Technol. 48(6), 363 (2013)

    Article  CAS  Google Scholar 

  38. R. Lamba, A. Umar, S.K. Mehta, S.K. Kansal, Sb2O3–ZnO nanospindles: a potential material for photocatalytic and sensing applications. Ceram. Int. 41(4), 5429 (2015)

    Article  CAS  Google Scholar 

  39. P. Ghasemipour, M. Fattahi, B. Rasekh, F. Yazdian, Developing the ternary ZnO doped MoS2 nanostructures grafted on CNT and reduced graphene oxide (RGO) for photocatalytic degradation of aniline. Sci. Rep. 10(1), 4414 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. R. Lamba, A. Umar, S.K. Mehta, S.K. Kansal, CeO2ZnO hexagonal nanodisks: Efficient material for the degradation of direct blue 15 dye and its simulated dye bath effluent under solar light. J. Alloys Compds. 620, 67 (2015)

    Article  CAS  Google Scholar 

  41. H. Lin, X. Chen, H. Li, M. Yang, Y. Qi, Hydrothermal synthesis and characterization of MoS2 nanorods. Mater. Lett. 64(15), 1748 (2010)

    Article  CAS  Google Scholar 

  42. P. Xing, P. Chen, Z. Chen, X. Hu, H. Lin, Y. Wu, L. Zhao, Y. He, Novel ternary MoS2/C-ZnO composite with efficient performance in photocatalytic NH3 synthesis under simulated sunlight. ACS Sustain. Chem. Eng. 6(11), 14866 (2018)

    Article  CAS  Google Scholar 

  43. S. Asaithambi, P. Sakthivel, M. Karuppaiah, G.U. Sankar, K. Balamurugan, R. Yuvakkumar, M. Thambidurai, G. Ravi, Investigation of electrochemical properties of various transition metals doped SnO2 spherical nanostructures for supercapacitor applications. J. Energy Storage 31, 101530 (2020)

    Article  Google Scholar 

  44. R. Ameta, M.S. Solanki, S. Benjamin, S.C. Ameta. Photocatalysis In: Advanced oxidation processes for waste water treatment (Elsevier, 2018), pp. 135. https://doi.org/10.1016/B978-0-12-810499-6.00006-1. https://www.sciencedirect.com/science/article/abs/pii/B9780128104996000061

  45. Y. Wang, L. Zhang, K. Deng, X. Chen, Z. Zou, Low temperature synthesis and photocatalytic activity of rutile TiO2 nanorod superstructures. J. Phys. Chem. C 111(6), 2709 (2007). https://doi.org/10.1021/jp066519k

    Article  CAS  Google Scholar 

  46. S. Vadivel, G. Rajarajan, Influence of Cu doping on structural, optical and photocatalytic activity of SnO2 nanostructure thin films. J. Mater. Sci. Mater. Electron. 26, 5863 (2015)

    Article  CAS  Google Scholar 

  47. C.V. Ramana, U. Becker, V. Shutthanandan, C.M. Julien, Oxidation and metal-insertion in molybdenite surfaces: evaluation of charge-transfer mechanisms and dynamics. Geochem. Trans. 9, 1 (2008)

    Article  Google Scholar 

  48. Y. Min, G. He, Q. Xu, Y. Chen, Dual-functional MoS2 sheet-modified CdS branch-like heterostructures with enhanced photostability and photocatalytic activity. J. Mater. Chem. A 2(8), 2578 (2014)

    Article  CAS  Google Scholar 

  49. Y. Ahmed, Z. Yaakob, P. Akhtar, Degradation and mineralization of methylene blue using a heterogeneous photo-Fenton catalyst under visible and solar light irradiation. Catal. Sci. Technol. 6(4), 1222 (2016)

    Article  CAS  Google Scholar 

  50. J. Luan, Z. Hu, Synthesis, property characterization, and photocatalytic activity of novel visible light-responsive photocatalyst. Int. J. Photoenergy 2012, 1 (2012)

    Google Scholar 

  51. S. Kapatel, C.K. Sumesh, Two-step facile preparation of MoS2 ‧ ZnO nanocomposite as efficient photocatalyst for methylene blue (dye) degradation. Electron. Mater. Lett. 15, 119 (2019)

    Article  CAS  Google Scholar 

  52. F. Liu, J. Zhao, Y. Ma, Z. Liu, Y. Xu, H. Zhang, Removal of diesel from soil washing effluent by electro-enhanced Fe2+ activated persulfate process. J. Electroanalyt. Chem. 906, 115995 (2022)

    Article  CAS  Google Scholar 

  53. A. Ajmal, I. Majeed, R.N. Malik, H. Idriss, M.A. Nadeem, Principles and mechanisms of photocatalytic dye degradation on TiO 2 based photocatalysts: a comparative overview. Rsc Adv 4(70), 37003 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding for this work was provided by Project No. 20-12058 from the Higher Education Commission (HEC) of Pakistan under the supports of the National Research Program for Universities (NRPU).

Funding

Funding for this work was provided by Project No. 20-12058 from the Higher Education Commission (HEC) of Pakistan under the supports of the National Research Program for Universities (NRPU).

Author information

Authors and Affiliations

Authors

Contributions

Asad Naseem: Methodology; Data curation; Formal analysis; Writing—original draft. Yasir A. Haleem: Conceptualization; Supervision; Visualization; Investigation; Validation; Writing—revision & editing. Sheheera Irfan: Formal analysis; Software; Data curation; Writing—original draft. Muhammad Usman: Supervision; Funding acquisition; Resources; Writing—revision & editing. Naseeb Ahmad: Formal analysis; Resources; Writing—revision & editing. Muhammad Arshad: Formal analysis; Resources; Characterizations; Writing—revision & editing. Muhammad Imran Irshad: Formal analysis; Writing—revision & editing. Muhammad Farooq Saleem: Formal analysis; Writing—revision & editing. Rashid Khan: Formal analysis; Writing—revision & editing.

Corresponding authors

Correspondence to Yasir A. Haleem or Muhammad Usman.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 186 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naseem, A., Haleem, Y.A., Irfan, S. et al. Enhanced efficiency of MoS2/SnO2 nanocomposite as a catalyst for the photodegradation of methylene blue. Journal of Materials Research (2024). https://doi.org/10.1557/s43578-024-01426-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/s43578-024-01426-1

Keywords

Navigation