Skip to main content
Log in

Nanocomposites Fe2O3/PNR loaded partially reduced rGO/GCE as an electrochemical probe for selective determination of uric acid and dopamine

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In the paper, a high-performance electrode was reported for the determination of uric acid (UA) and dopamine (DA) by loading nanocomposites Fe2O3/poly-neutral red (PNR)/partially reduced graphene oxide (rGO) on glassy carbon electrode (GCE). The nanocomposites Fe2O3/PNR/rGO were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR), and electrochemical impedance spectroscopy (EIS). Under the optimized condition, the peak currents of UA and DA showed good linear relationships with their concentrations in the range of 1 × 10–6 to 1 × 10–3 mol L−1 and 3 × 10–7 to 9 × 10–5 mol L−1, respectively. The recovery rates were 93.0–102.0% and 99.2–104.6% for detecting DA from medical injections and human specimens, including urine and serum, respectively, 95.5–105.0% for UA from urine and serum samples. Obviously, this Fe2O3/PNR/rGO/GCE is expected to be used in production quality control and clinical test.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The data used to support the finding of this study are included within the article.

References

  1. Q. Li, J.-T. Wu, Y. Liu, X.-M. Qi, H.-G. Jin, C. Yang, J. Liu, G.-L. Li, Q.-G. He, Recent advances in black phosphorus-based electrochemical sensors: a review. Anal. Chim. Acta 1170, 338480 (2021)

    Article  CAS  PubMed  Google Scholar 

  2. G. Li, X. Qi, J. Wu, L. Xu, X. Wan, Y. Liu, Y. Chen, Q. Li, Ultrasensitive, label-free voltammetric determination of norfloxacin based on molecularly imprinted polymers and Au nanoparticle-functionalized black phosphorus nanosheet nanocomposite. J. Hazard. Mater. 436, 129107 (2022)

    Article  CAS  PubMed  Google Scholar 

  3. G. Li, J. Wu, X. Qi, X. Wan, Y. Liu, Y. Chen, L. Xu, Molecularly imprinted polypyrrole film-coated poly(3,4-ethylenedioxythiophene): polystyrene sulfonate-functionalized black phosphorene for the selective and robust detection of norfloxacin. Mater. Today Chem. 26, 101043 (2022)

    Article  CAS  Google Scholar 

  4. G. Li, X. Qi, G. Zhang, S. Wang, K. Li, J. Wu, X. Wan, Y. Liu, Q. Li, Low-cost voltammetric sensors for robust determination of toxic Cd(II) and Pb(II) in environment and food based on shuttle-like α-Fe2O3 nanoparticles decorated β-Bi2O3 microspheres. Microchem. J. 179, 107515 (2022)

    Article  CAS  Google Scholar 

  5. S. Rafique, R. Akram, M. Hussain, M. Waqar, R. Afrin, R. Nasir, A. Anjum, M.S. Awan, A comparative study of antibacterial properties and label-free electrochemical detection of digoxin based on MWCNTs-chitosan-Fe3O4/TiO2 composites. J. Mater. Res. 38(12), 3199 (2023)

    Article  CAS  Google Scholar 

  6. J. Li, W. Sun, X. Wang, H. Duan, Y. Wang, Y. Sun, C. Ding, C. Luo, Ultra-sensitive film sensor based on Al2O3-Au nanoparticles supported on PDDA-functionalized graphene for the determination of acetaminophen. Anal. Bioanal. Chem. 408(20), 5567 (2016)

    Article  CAS  PubMed  Google Scholar 

  7. M. Baghayeri, M. Nodehi, A. Amiri, N. Amirzadeh, R. Behazin, M.Z. Iqbal, Electrode designed with a nanocomposite film of CuO Honeycombs/Ag nanoparticles electrogenerated on a magnetic platform as an amperometric glucose sensor. Anal. Chim. Acta 1111, 49 (2020)

    Article  CAS  PubMed  Google Scholar 

  8. G. Zhao, Improved photoelectrochemical glucose oxidation on graphene supported CdS nanoparticles via decoration of CuO nanoparticles. Int. J. Electrochem. Sci. 15(1), 350–360 (2020)

    Article  CAS  Google Scholar 

  9. J.A. Buledi, A.R. Solangi, A. Malah, S.Q. Memon, N. Mahar, S. Ali, T. Ghumro, I.M. Palabiyik, Electrochemical characterization of SnO2/rGO nanostructure for selective quantification of captopril in real matrix. J. Mater. Res. 38(10), 2764 (2023)

    Article  CAS  Google Scholar 

  10. S.H. Mnyipika, T.S. Munonde, P.N. Nomngongo, MnO2@reduced graphene oxide nanocomposite-based electrochemical sensor for the simultaneous determination of trace Cd(II), Zn(II) and Cu(II) in water samples. Membranes 11(7), 517 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Z. Zhao, J. Zhang, W. Wang, Y. Sun, P. Li, J. Hu, L. Chen, W. Gong, Synthesis and electrochemical properties of Co3O4-rGO/CNTs composites towards highly sensitive nitrite detection. Appl. Surf. Sci. 485, 274 (2019)

    Article  CAS  Google Scholar 

  12. K.Y. Hwa, B. Subramani, Synthesis of zinc oxide nanoparticles on graphene-carbon nanotube hybrid for glucose biosensor applications. Biosens. Bioelectron. 62, 127 (2014)

    Article  CAS  PubMed  Google Scholar 

  13. Z. Hatami, E. Ragheb, F. Jalali, M.A. Tabrizi, M. Shamsipur, Zinc oxide-gold nanocomposite as a proper platform for label-free DNA biosensor. Bioelectrochemistry 133, 107458 (2020)

    Article  CAS  PubMed  Google Scholar 

  14. S. Liu, B. Yu, S. Wang, Y. Shen, H. Cong, Preparation, surface functionalization and application of Fe3O4 magnetic nanoparticles. Adv. Colloid Interface Sci. 281, 102165 (2020)

    Article  CAS  PubMed  Google Scholar 

  15. P. Dhiman, A. Kumar, M. Shekh, G. Sharma, G. Rana, D.N. Vo, N. AlMasoud, M. Naushad, A.L. Za, Robust magnetic ZnO-Fe2O3 Z-scheme hetereojunctions with in-built metal-redox for high performance photo-degradation of sulfamethoxazole and electrochemical dopamine detection. Environ. Res. 197, 111074 (2021)

    Article  CAS  PubMed  Google Scholar 

  16. K.Z. Kamali, P. Alagarsamy, N.M. Huang, B.H. Ong, H.N. Lim, Hematite nanoparticles-modified electrode based electrochemical sensing platform for dopamine. Sci. World J. 2014, 396135 (2014)

    Google Scholar 

  17. F. Zhu, G. Zhao, W. Dou, Electrochemical sandwich immunoassay for Escherichia coli O157:H7 based on the use of magnetic nanoparticles and graphene functionalized with electrocatalytically active Au@Pt core/shell nanoparticles. Microchim. Acta 185(10), 455 (2018)

    Article  Google Scholar 

  18. M.K. Kimani, J. Mwangi, E.D. Goluch, Electrophoresis on a polyester thread coupled with an end-channel pencil electrode detector. Electrophoresis 42(19), 1974 (2021)

    Article  CAS  PubMed  Google Scholar 

  19. H. Seelajaroen, M. Haberbauer, C. Hemmelmair, A. Aljabour, L.M. Dumitru, A.W. Hassel, N.S. Sariciftci, Enhanced bio-electrochemical reduction of carbon dioxide by using neutral red as a redox mediator. ChemBioChem 20(9), 1196 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. C.H. Im, C. Kim, Y.E. Song, S.E. Oh, B.H. Jeon, J.R. Kim, Electrochemically enhanced microbial CO conversion to volatile fatty acids using neutral red as an electron mediator. Chemosphere 191, 166 (2018)

    Article  CAS  PubMed  Google Scholar 

  21. Y. Kuzin, D. Kappo, A. Porfireva, D. Shurpik, I. Stoikov, G. Evtugyn, T. Hianik, Electrochemical DNA sensor based on carbon black-poly(neutral red) composite for detection of oxidative DNA damage sensors. Sensors 18(10), 3489 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  22. Y.J. Kim, B. Jeong, Graphene-based nanomaterials and their applications in biosensors. Adv. Exp. Med. Biol. 1064, 61 (2018)

    Article  CAS  PubMed  Google Scholar 

  23. A. Popov, R. Aukstakojyte, J. Gaidukevic, V. Lisyte, A. Kausaite-Minkstimiene, J. Barkauskas, A. Ramanaviciene, Reduced graphene oxide and polyaniline nanofibers nanocomposite for the development of an amperometric glucose biosensor. Sensors 21(3), 948 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. C.T. Thanh, N.H. Binh, P.N.D. Duoc, V.T. Thu, P. Van Trinh, N.N. Anh, N. Van Tu, N.V. Tuyen, N. Van Quynh, V.C. Tu, B.T.P. Thao, P.D. Thang, H. Abe, N. Van Chuc, Electrochemical sensor based on reduced graphene oxide/double-walled carbon nanotubes/octahedral Fe3O4/Chitosan composite for glyphosate detection. Bull. Environ. Contam. Toxicol. 106(6), 1017 (2021)

    Article  CAS  PubMed  Google Scholar 

  25. H. Han, C. Liu, J. Sha, Y. Wang, C. Dong, M. Li, T. Jiao, Ferrocene-reduced graphene oxide-polyoxometalates based ternary nanocomposites as electrochemical detection for acetaminophen. Talanta 235, 122751 (2021)

    Article  CAS  PubMed  Google Scholar 

  26. B. Mao, L. Qian, M. Govindhan, Z. Liu, A. Chen, Simultaneous electrochemical detection of guanine and adenine using reduced graphene oxide decorated with AuPt nanoclusters. Microchim. Acta 188(8), 276 (2021)

    Article  CAS  Google Scholar 

  27. D. Song, Y. Li, X. Lu, M. Sun, H. Liu, G. Yu, F. Gao, Palladium-copper nanowires-based biosensor for the ultrasensitive detection of organophosphate pesticides. Anal. Chim. Acta 982, 168 (2017)

    Article  CAS  PubMed  Google Scholar 

  28. J. Bai, X. Jiang, A facile one-pot synthesis of copper sulfide-decorated reduced graphene oxide composites for enhanced detecting of H2O2 in biological environments. Anal. Chem. 85(17), 8095 (2013)

    Article  CAS  PubMed  Google Scholar 

  29. L. Liu, J. Zhai, C. Zhu, L. Han, W. Ren, S. Dong, One-step synthesis of functional pNR/rGO composite as a building block for enhanced ascorbic acid biosensing. Anal. Chim. Acta 981, 34 (2017)

    Article  CAS  PubMed  Google Scholar 

  30. A.O.E. Abdelhalim, V.V. Sharoyko, A.A. Meshcheriakov, M.D. Luttsev, A.A. Potanin, N.R. Iamalova, E.E. Zakharov, S.V. Ageev, A.V. Petrov, L.V. Vasina, I.L. Solovtsova, A.V. Nashchekin, I.V. Murin, K.N. Semenov, Synthesis, characterisation and biocompatibility of graphene–L-methionine nanomaterial. J. Mol. Liq. 314, 113605 (2020)

    Article  CAS  Google Scholar 

  31. Z. Guo, G. Bai, B. Huang, N. Cai, P. Guo, L. Chen, Preparation and application of a novel biochar-supported red mud catalyst: active sites and catalytic mechanism. J. Hazard. Mater. 408, 124802 (2021)

    Article  CAS  PubMed  Google Scholar 

  32. Z.X. Wei, Y.Q. Xu, H.Y. Liu, C.W. Hu, Preparation and catalytic activities of LaFeO3 and Fe2O3 for HMX thermal decomposition. J. Hazard. Mater. 165(1–3), 1056 (2009)

    Article  CAS  PubMed  Google Scholar 

  33. F.M. Mazar, M. Alijanianzadeh, A. Molaeirad, P. Heydari, Development of novel glucose oxidase immobilization on graphene/gold nanoparticles/poly neutral red modified electrode. Process Biochem. 56, 71 (2017)

    Article  CAS  Google Scholar 

  34. M. Du, T. Yang, X. Guo, L. Zhong, K. Jiao, Electrochemical synthesis of Fe2O3 on graphene matrix for indicator-free impedimetric aptasensing. Talanta 105, 229 (2013)

    Article  CAS  PubMed  Google Scholar 

  35. X. Liu, G. Cui, L. Dong, X. Wang, Q. Zhen, Y. Sun, S. Ma, C. Zhang, H. Pang, Synchronous electrochemical detection of dopamine and uric acid by a PMo(12)@MIL-100(Fe)@PVP nanocomposite. Anal. Biochem. 648, 114670 (2022)

    Article  CAS  PubMed  Google Scholar 

  36. Y. You, J. Zou, W.J. Li, J. Chen, X.Y. Jiang, J.G. Yu, Novel lanthanum vanadate-based nanocomposite for simultaneously electrochemical detection of dopamine and uric acid in fetal bovine serum. Int. J. Biol. Macromol. 195, 346 (2022)

    Article  CAS  PubMed  Google Scholar 

  37. G. Li, P. Zhong, Y. Ye, X. Wan, Z. Cai, S. Yang, Y. Xia, Q. Li, J. Liu, Q. He, A Highly sensitive and stable dopamine sensor using shuttle-like α-Fe2O3 nanoparticles/electro-reduced graphene oxide composites. J. Electrochem. Soc. 166(15), B1552 (2019)

    Article  CAS  Google Scholar 

  38. Q. Li, Y. Xia, X. Wan, S. Yang, Z. Cai, Y. Ye, G. Li, Morphology-dependent MnO2/nitrogen-doped graphene nanocomposites for simultaneous detection of trace dopamine and uric acid. Mater. Sci. Eng. C 109, 110615 (2020)

    Article  CAS  Google Scholar 

  39. H. Liu, R. Xiong, P. Zhong, G. Li, J. Liu, J. Wu, Y. Liu, Q. He, Nanohybrids of shuttle-like α-Fe2O3 nanoparticles and nitrogen-doped graphene for simultaneous voltammetric detection of dopamine and uric acid. New J. Chem. 44, 20797 (2020)

    Article  CAS  Google Scholar 

  40. F. Li, B. Ni, Y. Zheng, Y. Huang, G. Li, A simple and efficient voltammetric sensor for dopamine determination based on ZnO nanorods/electro-reduced graphene oxide composite. Surf. Interfaces 26, 101375 (2021)

    Article  CAS  Google Scholar 

  41. H. Wang, A. Xie, S. Li, J. Wang, K. Chen, Z. Su, N. Song, S. Luo, Three-dimensional g-C(3)N(4)/MWNTs/GO hybrid electrode as electrochemical sensor for simultaneous determination of ascorbic acid, dopamine and uric acid. Anal. Chim. Acta 1211, 339907 (2022)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Liaoning Province Department of Education Fund (JYTJCZR2020069).

Author information

Authors and Affiliations

Authors

Contributions

Xinxin Qiao performed to the experiment and wrote the manuscript; Shu Li contributed to the data analyses; Jialei Zhu contributed to the manuscript preparation; Fuqin Wang contributed to the experiment; and Chang Liu helped perform the analysis with constructive discussions.

Corresponding author

Correspondence to Chang Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 12509 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, X., Bian, R., Li, S. et al. Nanocomposites Fe2O3/PNR loaded partially reduced rGO/GCE as an electrochemical probe for selective determination of uric acid and dopamine. Journal of Materials Research (2024). https://doi.org/10.1557/s43578-024-01411-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/s43578-024-01411-8

Keywords

Navigation