Skip to main content
Log in

Enhanced yield of methanol using rGO-Bi2S3/CuO heterojunction photocatalyst for CO2 reduction

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A visible light-induced rGO-Bi2S3/CuO S-scheme heterojunction photocatalyst is explored for the production of methanol and formic acid through photocatalytic CO2 reduction. In this work, the effect of CuO loading on rGO-Bi2S3 nano-hollow flower composite are investigated to improve the yield and selectivity of methanol production. The synthesised rGO-Bi2S3/CuO nanocomposite, being a highly efficient and robust photocatalyst, exhibits the maximum methanol yield of 423.52 μmol gcat.−1 h−1 along with formic acid. CuO loading on rGO-Bi2S3 is responsible for achieving the maximum photocatalytic activity of the rGO-Bi2S3/CuO photocatalyst, the narrowest band gap, the lowest recombination rate of electron–hole pairs, and the increased specific surface area for CO2 capture among all the related photocatalysts, rGO-Bi2S3, pristine Bi2S3, and Bi2S3/CuO nanocomposite. The selectivity of methanol is improved to 98.6% by the rGO-Bi2S3/CuO heterojunction photocatalyst. The absorption edge (652.4 nm) of the rGO-Bi2S3/CuO photocatalyst clearly exhibits outstanding visible light absorption and enhanced photo carrier transportation power.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

All datasets generated or analysed during the current study are incorporated in this article.

References

  1. F. He, B. Zhu, B. Cheng, J. Yu, W. Ho, W. Macyk, 2D/2D/0D TiO2/C3N4/Ti3C2 MXene composite S-scheme photocatalyst with enhanced CO2 reduction activity. Appl. Catal. B Environ. 272, 0926–3373 (2020). https://doi.org/10.1016/j.apcatb.2020.119006

    Article  CAS  Google Scholar 

  2. S. Gong, Y. Niu, X. Teng, X. Liu, M. Xu, C. Xu, T.J. Meyer, Z. Chen, Visible light-driven, selective CO2 reduction in water by In-doped Mo2C based on defect engineering. Appl. Catal. B Environ. 310, 0926–3373 (2022). https://doi.org/10.1016/j.apcatb.2022.121333

    Article  CAS  Google Scholar 

  3. A.A. Khan, M. Tahir, Recent advancements in engineering approach towards design of photo-reactors for selective photocatalytic CO2 reduction to renewable fuels. J. CO2 Util. 29, 205–239 (2019). https://doi.org/10.1016/j.jcou.2018.12.008

  4. F.F. Chen, L. Zhou, C. Peng, D. Zhang, L. Li, D. Xue, Y. Yu, Bimetal-organic layer-derived ultrathin lateral heterojunction with continuous semi-coherent interfaces for boosting photocatalytic CO2 reduction. Appl. Catal. B Environ. 331, 0926–3373 (2023). https://doi.org/10.1016/j.apcatb.2023.122689

    Article  CAS  Google Scholar 

  5. P. Madhusudan, R. Shi, S. Xiang, M. Jin, B.N. Chandrashekar, J. Wang, W. Wang, O. Peng, A. Amini, C. Cheng, Construction of highly efficient Z-scheme ZnxCd1-xS/Au@g-C3N4 ternary heterojunction composite for visible-light-driven photocatalytic reduction of CO2 to solar fuel. Appl. Catal. B Environ. 282, 0926–3373 (2021). https://doi.org/10.1016/j.apcatb.2020.119600

    Article  CAS  Google Scholar 

  6. F.A. Qaraah, S.A. Mahyoub, A. Hezam, A. Qaraah, F. Xin, G. Xiu, Synergistic effect of hierarchical structure and S-scheme heterojunction over O-doped g-C3N4/N-doped Nb2O5 for highly efficient photocatalytic CO2 reduction. Appl. Catal. B Environ. 315, 0926–3373 (2022). https://doi.org/10.1016/j.apcatb.2022.121585

    Article  CAS  Google Scholar 

  7. H. Xi, Y. Xu, W. Zou, J. Ji, Y. Cai, H. Wan, L. Dong, Enhanced methanol selectivity of CuxO/TiO2 photocatalytic CO2 reduction: Synergistic mechanism of surface hydroxyl and low-valence copper species. J. CO2 Util. 55, 2212–9820 (2022). https://doi.org/10.1016/j.jcou.2021.101825

  8. S. Patial, R. Kumar, P. Raizada, P. Singh, Q.V. Le, E. Lichtfouse, D.L.T. Nguyen, V.-H. Nguyen, Boosting light-driven CO2 reduction into solar fuels: mainstream avenues for engineering ZnO-based photocatalysts. Environ. Res. 197, 0013–9351 (2021). https://doi.org/10.1016/j.envres.2021.111134

    Article  CAS  Google Scholar 

  9. M. Elavarasan, W. Yang, S. Velmurugan, J.-N. Chen, Y.-T. Chang, T.C.-K. Yang, T. Yokoi, In-situ infrared investigation of m-TiO2/α-Fe2O3 photocatalysts and tracing of intermediates in photocatalytic hydrogenation of CO2 to methanol. J. CO2 Util. 56, 2212–9820 (2022). https://doi.org/10.1016/j.jcou.2021.101864

  10. L. He, W. Zhang, S. Liu, Y. Zhao, Three-dimensional porous N-doped graphitic carbon framework with embedded CoO for photocatalytic CO2 reduction. Appl. Catal. B Environ. 298, 0926–3373 (2021). https://doi.org/10.1016/j.apcatb.2021.120546

    Article  CAS  Google Scholar 

  11. S. Zhu, W. Liao, M. Zhang, S. Liang, Design of spatially separated Au and CoO dual cocatalysts on hollow TiO2 for enhanced photocatalytic activity towards the reduction of CO2 to CH4. Chem. Engine. J. 361, 461–469 (2019). https://doi.org/10.1016/j.cej.2018.12.095

    Article  CAS  Google Scholar 

  12. B.D. Bankar, K. Ravi, R.J. Tayade, A.V. Biradar, Iridium supported on spinal cubic cobalt oxide catalyst for the selective hydrogenation of CO2 to formic acid. J. CO2 Util. 67, 2212–9820 (2023). https://doi.org/10.1016/j.jcou.2022.102315

  13. D. Montalvo, G. Corro, F. Bañuelos, O.O. Xometl, P. Arellanes, U. Pal, Selective alcohols production through CO2 photoreduction using Co3O4 /TiO2 photocatalyst exploiting synergetic interactions between Ti3+, Co2+ and Co3+. Appl. Catal. B Environ. 330, 0926–3373 (2023). https://doi.org/10.1016/j.apcatb.2023.122652

    Article  CAS  Google Scholar 

  14. J.C. M.-Sierra, A. H.-Ramírez, D.A. P.-Sandoval, E. R.-Ruiz, A. M.-Hernández, Promoting multielectron CO2 reduction using a direct Z-scheme WO3/ZnS photocatalyst. J. CO2 Util. 63, 2212–9820 (2022). https://doi.org/10.1016/j.jcou.2022.102122

  15. A. Raza, H. Shen, A.A. Haidry, L. Sun, R. Liu, S. Cui, Studies of Z-scheme WO3-TiO2/Cu2ZnSnS4 ternary nanocomposite with enhanced CO2 photoreduction under visible light irradiation. J. CO2 Util. 37, 2212–9820 (2020). https://doi.org/10.1016/j.jcou.2019.12.020

  16. X. Chen, Q. Li, J. Li, J. Chen, H. Jia, Modulating charge separation via in situ hydrothermal assembly of low content Bi2S3 into UiO-66 for efficient photothermocatalytic CO2 reduction. Appl. Catal. B Environ. 270, 0926–3373 (2020). https://doi.org/10.1016/j.apcatb.2020.118915

    Article  CAS  Google Scholar 

  17. X. Li, H. Liu, D. Luo, J. Li, Y. Huang, H. Li, Y. Fang, Y. Xu, L. Zhu, Adsorption of CO2 on heterostructure CdS(Bi2S3)/TiO2 nanotube photocatalysts and their photocatalytic activities in the reduction of CO2 to methanol under visible light irradiation. Chem. Engine. J. 180, 1385–8947 (2012). https://doi.org/10.1016/j.cej.2011.11.029

    Article  CAS  Google Scholar 

  18. H. He, X. Gao, K. Xu, H. Li, Y. Hu, C. Yang, F. Fu, 1D/0D Z-scheme heterostructure of Bi2S3/CdXZn1−XS with strong interfacial electric field coupling enhanced mass transfer based on gas-liquid-solid micro interface contact for efficient photothermal synergistic catalytic CO2 reduction to syngas. Chem. Engine. J. 450, 1385–8947 (2022). https://doi.org/10.1016/j.cej.2022.138266

    Article  CAS  Google Scholar 

  19. S.Y. Choi, S.H. Yoon, U. Kang, D.S. Han, H. Park, Standalone photoconversion of CO2 using Ti and TiOx-sandwiched heterojunction photocatalyst of CuO and CuFeO2 films. Appl. Cata. B: Environ. 288, 0926–3373 (2021). https://doi.org/10.1016/j.apcatb.2021.119985

    Article  CAS  Google Scholar 

  20. S. Ali, A. Razzaq, H. Kim, S.-I. In, Activity, selectivity, and stability of earth-abundant CuO/Cu2O/Cu0-based photocatalysts toward CO2 reduction. Chem. Engine. J. 429, 1385–8947 (2022). https://doi.org/10.1016/j.cej.2021.131579

    Article  CAS  Google Scholar 

  21. N. Li, X. Liu, J. Zhou, W. Chen, M. Liu, Encapsulating CuO quantum dots in MIL-125(Ti) coupled with g-C3N4 for efficient photocatalytic CO2 reduction. Chem. Engine. J. 399, 1385–8947 (2020). https://doi.org/10.1016/j.cej.2020.125782

    Article  CAS  Google Scholar 

  22. M.A. Á.-López, S. Gavrielides, X.J. Luo, A.E. Ojoajogwu, J.Z.Y. Tan, E. L.-Hipólito, L. M. T.-Martínez, M. M. M.-Valer, Comparative study of CO2 photoreduction using different conformations of CuO photocatalyst: Powder, coating on mesh and thin film. J. CO2 Util. 50, 2212–9820 (2021). https://doi.org/10.1016/j.jcou.2021.101588

  23. S. Wang, L. Wang, W. Huang, Bismuth-based photocatalysts for solar energy conversion. J. Mater. Chem. A 8, 24307–24352 (2020). https://doi.org/10.1039/D0TA09729B

    Article  CAS  Google Scholar 

  24. T. Yu, Q. Liu, Z. Zhu, W. Wu, L. Liu, J. Zhang, C. Gao, T. Yang, Construction of a photocatalytic fuel cell using a novel Z-scheme MoS2/rGO/Bi2S3 as electrode degraded antibiotic wastewater. Sep. Purif. Technol. 277, 1383–5866 (2021). https://doi.org/10.1016/j.seppur.2021.119276

    Article  CAS  Google Scholar 

  25. J. Chen, S. Qin, G. Song, T. Xiang, F. Xin, X. Yin, Shape-controlled solvothermal synthesis of Bi2S3 for photocatalytic reduction of CO2 to methyl formate in methanol. Dalton Trans. 42, 15133–15138 (2013). https://doi.org/10.1039/C3DT51887F

    Article  CAS  PubMed  Google Scholar 

  26. Z. Long, G. Zhang, H. Du, J. Zhu, J. Li, Preparation and application of BiOBr-Bi2S3 heterojunctions for efficient photocatalytic removal of Cr(VI). J. Hazar. Mater. 407, 0304–3894 (2021). https://doi.org/10.1016/j.jhazmat.2020.124394

    Article  CAS  Google Scholar 

  27. S. Paul, D. Barman, C. Chowdhury, P.K. Girib, S.K. De, 3D/2D Bi2S3/SnS2 heterostructures: superior charge separation and enhanced solar light-driven photocatalytic performance. CrystEngComm 23, 2276–2288 (2021). https://doi.org/10.1039/D0CE01710H

    Article  CAS  Google Scholar 

  28. S. Ijaz, M.F. Ehsan, M.N. Ashiq, T. He, Synthesis of Bi2S3/CeO2 nanocatalyst and its visible-light-driven conversion of CO2 into CH3OH and CH4. Catal. Sci. Technol. 5, 5208–5215 (2015). https://doi.org/10.1039/C5CY00955C

    Article  CAS  Google Scholar 

  29. R. He, D. Xu, B. Cheng, J. Yu, W. Ho, Review on nanoscale Bi-based photocatalysts. Nanoscale Horiz. 3, 464–504 (2018). https://doi.org/10.1039/C8NH00062J

    Article  CAS  PubMed  Google Scholar 

  30. G.H. Gote, S.R. Bhopale, M.A. More, D.J. Late, Realization of efficient field emitter based on reduced graphene oxide-Bi2S3 heterostructures. Phys. Status Solidi A 216, 1900121 (2019). https://doi.org/10.1002/pssa.201900121

    Article  CAS  Google Scholar 

  31. Y. Wang, J. Jin, W. Chu, D. Cahen, T. He, Synergistic effect of charge generation and separation in epitaxially grown BiOCl/Bi2S3 nano-heterostructure. ACS Appl. Mater. Interfaces 10, 15304–15313 (2018). https://doi.org/10.1021/acsami.8b03390

    Article  CAS  PubMed  Google Scholar 

  32. N.T.M. Tho, N.V. Cuong, V.H.L. Thi, N.Q. Thang, P.H. Dang, A novel n–p heterojunction Bi2S3/ZnCo2O4 photocatalyst for boosting visible-light-driven photocatalytic performance toward indigo carmine. RSC Adv. 13, 16248–16259 (2023). https://doi.org/10.1039/D3RA02803H

    Article  Google Scholar 

  33. S. Li, K. Dong, M. Cai, X. Li, X. Chen, A plasmonic S-scheme Au/MIL-101(Fe)/BiOBr photocatalyst for efficient synchronous decontamination of Cr(VI) and norfloxacin antibiotic. eScience (2023). https://doi.org/10.1016/j.esci.2023.100208

  34. C. Wang, C. You, K. Rong, C. Shen, F. Yang, S. Li, An S-Scheme MIL-101(Fe)-on-BiOCl heterostructure with oxygen vacancies for boosting photocatalytic removal of Cr(VI)[J]. Acta Phys. -Chim. Sin. 40(7), 2307045 (2024). https://doi.org/10.3866/PKU.WHXB202307045

    Article  Google Scholar 

  35. S. Li, R. Yan, M. Cai, W. Jiang, M. Zhang, X. Li, Enhanced antibiotic degradation performance of Cd0.5Zn0.5S/Bi2MoO6 S-scheme photocatalyst by carbon dot modification, J. Mater. Sci. Technol. 164, 59–67 (2023). https://doi.org/10.1016/j.jmst.2023.05.009

  36. M. Cai, Y. Liu, K. Dong, X. Chen, S. Li, Floatable S-scheme Bi2WO6/C3N4/carbon fiber cloth composite photocatalyst for efficient water decontamination. Chin. J. Catal. 52, 239–251 (2023). https://doi.org/10.1016/S1872-2067(23)64496-1

    Article  CAS  Google Scholar 

  37. S. Li, M. Cai, Y. Liu, C. Wang, R. Yan, X. Chen, Constructing Cd0.5Zn0.5S/Bi2WO6 S-scheme heterojunction for boosted photocatalytic antibiotic oxidation and Cr(VI) reduction. Adv. Powd. Mater. 2,100073 (2023). https://doi.org/10.1016/j.apmate.2022.100073

  38. S. Li, M. Cai, Y. Liu, C. Wang, K. Lv, X. Chen, S-Scheme photocatalyst TaON/Bi2WO6 nanofibers with oxygen vacancies for efficient abatement of antibiotics and Cr(VI): Intermediate eco-toxicity analysis and mechanistic insights. Chin. J. Catal. 43, 2652–2664 (2022). https://doi.org/10.1016/S1872-2067(22)64106-8

    Article  CAS  Google Scholar 

  39. S. Li, M. Cai, C. Wang, Y. Liu, Ta3N5/CdS core–shell S‑scheme heterojunction nanofibersfor efficient photocatalytic removal of antibiotic tetracycline and Cr(VI): performance and mechanism insights. Adv. Fiber Mater. 5, 994–1007 (2023). https://doi.org/10.1007/s42765-022-00253-5

  40. P. Subramanyam, B. Meena, G.N. Sinha, D. Suryakala, C. Subrahmanyam, Facile synthesis and photoelectrochemical performance of a Bi2S3@rGO nanocomposite photoanode for efficient water splitting. Energy Fuels 35, 6315–6321 (2021). https://doi.org/10.1021/acs.energyfuels.1c00084

    Article  CAS  Google Scholar 

  41. W. Dai, J. Yu, S. Luo, X. Hu, L. Yang, S. Zhang, B. Li, X. Luo, J. Zou, WS2 quantum dots seeding in Bi2S3 nanotubes: a novel Vis-NIR light sensitive photocatalyst with low-resistance junction interface for CO2 reduction. Chem. Engine. J. 389, 1385–8947 (2020). https://doi.org/10.1016/j.cej.2019.123430

    Article  CAS  Google Scholar 

  42. J. Duan, P. Sun, H. Zhao, Z. Ji, D. Zhang, W. Wang, Construction of columnar cactus-like 2D/1D CdxCu1-xS@CuO shell-core structure photocatalyst for the reduction of CO2 to methanol. Opt. Mater. 115, 0925–3467 (2021). https://doi.org/10.1016/j.optmat.2021.111016

    Article  CAS  Google Scholar 

  43. V. Kumari, S. Kaushal, P.P. Singh, Green synthesis of a CuO/rGO nanocomposite using a Terminalia arjuna bark extract and its catalytic activity for the purification of water. Mater. Adv. 3, 2170–2184 (2022). https://doi.org/10.1039/D1MA00993A

    Article  CAS  Google Scholar 

  44. C. Zhou, L. Cheng, Y. Li, M. Zeng, Y. Yang, J. Wu, X. Zhao, Novel photoactivation promotes catalytic abatement of CO on CuO mesoporous nanosheets with full solar spectrum illumination. Appl. Cataly. B: Environ. 225, 0926–3373 (2018). https://doi.org/10.1016/j.apcatb.2017.11.081

    Article  CAS  Google Scholar 

  45. T. P. Y. Taraka, A. Gautam, S.L. Jain, S. Bojja, U. Pal, Controlled addition of Cu/Zn in hierarchical CuO/ZnO p-n heterojunction photocatalyst for high photoreduction of CO2 to MeOH, J. CO2 Utiliza. 31, 2212–9820 (2019). https://doi.org/10.1016/j.jcou.2019.03.012

  46. A.E. Nogueira, J.A. Oliveira, G.T.S.T da Silva, C. Ribeiro, Insights into the role of CuO in the CO2 photoreduction process. Sci Rep 9, 1316 (2019). https://doi.org/10.1038/s41598-018-36683-8

  47. R. Fiorenza, M. Bellardita, S.A. Balsamo, L. Spitaleri, A. Gulino, M. Condorelli, L. D’Urso, S. Scirè, L. Palmisano, A solar photothermocatalytic approach for the CO2 conversion: investigation of different synergisms on CoO-CuO/brookite TiO2-CeO2 catalysts. Chem. Engine. J. 428, 1385–8947 (2022). https://doi.org/10.1016/j.cej.2021.131249

    Article  CAS  Google Scholar 

  48. H.R. Kim, A. Razzaq, C.A. Grimes, S.-I. In, Heterojunction p-n-p Cu2O/S-TiO2/CuO: Synthesis and application to photocatalytic conversion of CO2 to methane, J. CO2 Util. 20, 2212–9820 (2017). https://doi.org/10.1016/j.jcou.2017.05.008

  49. M. Lashgari, S. Soodi, P. Zeinalkhani, Photocatalytic back-conversion of CO2 into oxygenate fuels using an efficient ZnO/CuO/carbon nanotube solar-energy-material: Artificial photosynthesis, J. CO2 Util. 18, 2212–9820 (2017). https://doi.org/10.1016/j.jcou.2017.01.017

  50. X.X. Jiang, X.D. Hu, M. Tarek, P. Saravanan, R. Alqadhi, S.Y. Chin, M.M.R. Khan, Tailoring the properties of g-C3N4 with CuO for enhanced photoelectrocatalytic CO2 reduction to methanol, J. CO2 Utiliza. 40, 2212–9820 (2020). https://doi.org/10.1016/j.jcou.2020.101222

  51. A.E. Nogueira, G.T.S.T. Silva, J.A. Oliveira, O.F. Lopes, J.A. Torres, M. Carmo, C. Ribeiro, CuO decoration controls Nb2O5 photocatalyst selectivity in CO2 reduction. ACS Appl. Energy Mater. 3, 7629–7636 (2020). https://doi.org/10.1021/acsaem.0c01047

    Article  CAS  Google Scholar 

  52. Y. Jiang, J. Guo, X. Li, G. Wu, M. Mu, X. Yin, Direct Z-scheme 0D/2D heterojunction of CuO quantum Dots/ultrathin CoAl-LDH for boosting charge separation and photocatalytic CO2 reduction. Sol. Energy 231, 705–715 (2022). https://doi.org/10.1016/j.solener.2021.12.001

    Article  CAS  Google Scholar 

  53. M. Edelmannová, K.-Y. Lin, J.C.S. Wu, I. Troppová, L. Čapek, K. Kočí, Photocatalytic hydrogenation and reduction of CO2 over CuO/ TiO2 photocatalysts. Appl. Surf. Scie. 454, 0169–0433 (2018). https://doi.org/10.1016/j.apsusc.2018.05.123

    Article  CAS  Google Scholar 

  54. Y. Wang, F. Xin, J. Chen, T. Xiang, X. Yin, Photocatalytic reduction of CO2 in isopropanol on Bi2S3 quantum dots/TiO2 nanosheets with exposed 001 facets. J. Nanosci. Nanotechnol. 17, 1863–1869 (2017). https://doi.org/10.1166/jnn.2017.12871

    Article  CAS  Google Scholar 

  55. A. Mandal, S. Maitra, S. Roy, B. Hazra, K. Ray, K. Kargupta, Selective photo-reduction of CO2 to methanol using Cu-doped 1D-Bi2S3/rGO nanocomposites under visible light irradiation. New J. Chem. 47, 1422–1434 (2023). https://doi.org/10.1039/D2NJ03892G

    Article  CAS  Google Scholar 

  56. X. Li, J. Chen, H. Li, J. Li, Y. Xu, Y. Liu, J. Zhou, Photoreduction of CO2 to methanol over Bi2S3/CdS photocatalyst under visible light irradiation. J. Natur. Gas Chemi. 20, 1003–9953 (2011). https://doi.org/10.1016/S1003-9953(10)60212-5

    Article  CAS  Google Scholar 

  57. J. Jin, T. He, Facile synthesis of Bi2S3 nanoribbons for photocatalytic reduction of CO2 into CH3OH. Appl. Surf. Scie. 394, 0169–4332 (2017). https://doi.org/10.1016/j.apsusc.2016.10.118

    Article  CAS  Google Scholar 

  58. R. Gusain, P. Kumar, O.P. Sharma, S.L. Jain, O.P. Khatri, Reduced graphene oxide–CuO nanocomposites for photocatalytic conversion of CO2 into methanol under visible light irradiation. Appl. Catal. B Environ. 181, 0926–3373 (2016). https://doi.org/10.1016/j.apcatb.2015.08.012

    Article  CAS  Google Scholar 

  59. K. Chen, X. Zhao, X.-J. Zhang, W.-S. Zhang, Z.-F. Wu, H.-Y. Wang, D.-X. Han, L. Niu, Enhanced photocatalytic CO2 reduction by constructing an In2O3–CuO heterojunction with CuO as a cocatalyst. Catal. Sci. Technol. 11, 2713–2717 (2021). https://doi.org/10.1039/D1CY00318F

    Article  CAS  Google Scholar 

  60. S.-J. Shi, S.-S. Zhou, S.-Q. Liu, Z.-G. Chen, Photocatalytic activity of erbium-doped CeO2 enhanced by reduced graphene oxide/CuO cocatalyst for the reduction of CO2 to methanol. Environ. Progr. Sustain. Energy 37, 655–662 (2018). https://doi.org/10.1002/ep.12717

    Article  CAS  Google Scholar 

  61. E. L.-Hipólito, L.M. T.-Martínez, A. F.-Trujillo, Ternary ZnO/CuO/Zeolite composite obtained from volcanic ash for photocatalytic CO2 reduction and H2O decomposition, J. Phys. Chem. Solids 151, 0022–3697 (2021). https://doi.org/10.1016/j.jpcs.2020.109917

  62. L.I. I.-Rodriguez, J.C. P.-Espinoza, E. L.-Hipólito, L.F. G.-Rodríguez, A. L.-Ortiz, L.M. T.-Martínez, V.H. C.-Martínez, Formic acid and hydrogen generation from the photocatalytic reduction of CO2 on visible light activated N-TiO2/CeO2/CuO composites, J. Photochem. Photobiol. 11, 2666–4690 (2022). https://doi.org/10.1016/j.jpap.2022.100125

  63. S. Li, C. Wang, Y. Liu, Y. Liu, M. Cai, W. Zhao, X. Duan, S-scheme MIL-101(Fe) octahedrons modified Bi2WO6 microspheres for photocatalytic decontamination of Cr(VI) and tetracycline hydrochloride: synergistic insights, reaction pathways, and toxicity analysis. Chem. Engine. J. 455, 140943 (2023). https://doi.org/10.1016/j.cej.2022.140943

    Article  CAS  Google Scholar 

  64. S. Li, C. Wang, Y. Liu, B. Xue, W. Jiang, Y. Liu, L. Mo, X. Chen, Photocatalytic degradation of antibiotics using a novel Ag/Ag2S/Bi2MoO6 plasmonic p-n heterojunction photocatalyst: Mineralization activity, degradation pathways and boosted charge separation mechanism. Chem. Engine. J. 415, 128991 (2021). https://doi.org/10.1016/j.cej.2021.128991

    Article  CAS  Google Scholar 

  65. S.V.P. Vattikuti, A.K.R. Police, J. Shim, C. Byon, Sacrificial-template-free synthesis of core-shell C@Bi2S3 heterostructures for efficient supercapacitor and H2 production applications. Sci. Rep. 8, 4194 (2018). https://doi.org/10.1038/s41598-018-22622-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Jadavpur University, CRNN-University of Calcutta, Bose Institute, IIT Kharagpur and IIT Delhi for characterization.

Funding

The authors certify that they did not receive any grants, funding, or other assistance in the process of writing this paper.

Author information

Authors and Affiliations

Authors

Contributions

The idea, design, material preparation, data collecting, analysis, and manuscript writing for this article were done by all authors. Every author has reviewed and approved the completed work.

Corresponding author

Correspondence to Kajari Kargupta.

Ethics declarations

Conflict of interest

The authors declare that there are no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 524 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, A., Bhattacharya, G. & Kargupta, K. Enhanced yield of methanol using rGO-Bi2S3/CuO heterojunction photocatalyst for CO2 reduction. Journal of Materials Research (2024). https://doi.org/10.1557/s43578-024-01352-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/s43578-024-01352-2

Keywords

Navigation