Skip to main content
Log in

Portland cement associated with niobium is evidenced by the presence of calcium crystals and biocompatibility in the rat subcutaneous tissue

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This study evaluated the chemical, mechanical, and biocompatibility of Portland cement (PC) with different proportions of niobium oxide (Nb2O5). Five male Wistar rats were used. Four polyethylene tubes were placed on the dorsal subcutaneous tissue: one tube empty (NC), one tube MTA (Angelus®), one tube contained F6 (PC, Nb2O5 and CaSO4), and one tube F7 (PC, Bi2O3, Nb2O5 and CaSO4). After 60 days, animals were euthanized, and tubes were removed with the surrounding tissues. Inflammatory infiltrates were stained with hematoxylin–eosin. Mineralization was analyzed using Von Kossa staining and polarized light. The F6 showed small vessels and dispersed mononuclear inflammatory cells, score of 1 (1–2), p˃0.05 vs. NC 0.5 (0–1), and the absence of cell giants. Positive Von Kossa staining and birefringent structures under polarized light were observed with MTA, F6, and F7. The niobium oxide (Nb2O5), in association with Portland cement, exhibits calcium crystals and biocompatibility in rat subcutaneous tissue.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available from the corresponding author upon reasonable request.

Consent for publication

Not applicable.

References

  1. F. Banchs, M. Trope, Revascularization of immature permanent teeth with apical periodontitis: new treatment protocol? J. Endod. 30(4), 196–200 (2004). https://doi.org/10.1097/00004770-200404000-00003

    Article  PubMed  Google Scholar 

  2. N. Farsi, N. Alamoudi, K. Balto, A. Al Mushayt, Clinical assessment of mineral trioxide aggregate (MTA) as direct pulp capping in young permanent teeth. J. Clin. Pediatr. Dent. 31(2), 72–76 (2006). https://doi.org/10.17796/jcpd.31.2.n462281458372u64

    Article  PubMed  Google Scholar 

  3. A.A. Hashem, E.E. Hassanien, ProRoot MTA, MTA-Angelus and IRM used to repair large furcation perforations: sealability study. J. Endod. 34(1), 59–61 (2008). https://doi.org/10.1016/j.joen.2007.09.007

    Article  PubMed  Google Scholar 

  4. S.H. Baek, H. Plenk Jr., S. Kim, Periapical tissue responses and cementum regeneration with amalgam, SuperEBA, and MTA as root-end filling materials. J. Endod. 31(6), 444–449 (2005). https://doi.org/10.1097/01.don.0000148145.81366.a5

    Article  PubMed  Google Scholar 

  5. C.V. Bin, M.C. Valera, S.E. Camargo, S.B. Rabelo, G.O. Silva, I. Balducci, C.H. Camargo, Cytotoxicity and genotoxicity of root canal sealers based on mineral trioxide aggregate. J. Endod. 38(4), 495–500 (2012). https://doi.org/10.1016/j.joen.2011.11.003

    Article  PubMed  Google Scholar 

  6. C.S.B. Lima, L.C.A. Cordeiro, R.C. Ribeiro, V. Jobel Júnior, W.S. Guimarães, P.F.P.I.O.M. Benarrosh, Produção, Utilização e Vantagens do Cimento Portland e CP IV. Rev. Farociênc. 4(1) (2017)

  7. D. Antonijevic, I. Medigovic, M. Zrilic, B. Jokic, Z. Vukovic, L. Todorovic, The influence of different radiopacifying agents on the radiopacity, compressive strength, setting time, and porosity of Portland cement. Clin. Oral Investig. 18(6), 1597–1604 (2014). https://doi.org/10.1007/s00784-013-1130-0

    Article  PubMed  Google Scholar 

  8. K.S. Coomaraswamy, P.J. Lumley, M.P. Hofmann, Effect of bismuth oxide radiopacifier content on the material properties of an endodontic Portland cement-based (MTA-like) system. J. Endod. 33(3), 295–298 (2007). https://doi.org/10.1016/j.joen.2006.11.018

    Article  PubMed  Google Scholar 

  9. R. Grazziotin-Soares, M.H. Nekoofar, T.E. Davies, A. Bafail, E. Alhaddar, R. Hübler, A.L. Busato, P.M. Dummer, Effect of bismuth oxide on white mineral trioxide aggregate: chemical characterization and physical properties. Int. Endod. J. 47(6), 520–533 (2014). https://doi.org/10.1111/iej.12181

    Article  CAS  PubMed  Google Scholar 

  10. J. Camilleri, J. Borg, D. Damidot, E. Salvadori, P. Pilecki, P. Zaslansky, B.W. Darvell, Colour and chemical stability of bismuth oxide in dental materials with solutions used in routine clinical practice. PLoS ONE 15(11), e0240634 (2020). https://doi.org/10.1371/journal.pone.0240634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. D.O. Nduka, B.J. Olawuyi, O.O. Joshua, I.O. Omuh, A study on gel/space ratio development in binary mixture containing Portland cement and meta-illite calcined clay/rice husk ash. Gels 8(2), 85–95 (2022). https://doi.org/10.3390/gels8020085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. S. Shahi, E. Fakhri, H. Yavari, S. Maleki Dizaj, S. Salatin, K. Khezri, Portland cement: an overview as a root repair material. Biomed. Res. Int. 2022, 3314912 (2022). https://doi.org/10.1155/2022/3314912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. R. Steffen, H. van Waes, Understanding mineral trioxide aggregate/Portland-cement: a review of literature and background factors. Eur. Arch. Paediatr. Dent. 10(2), 93–97 (2009). https://doi.org/10.1007/BF03321608

    Article  CAS  PubMed  Google Scholar 

  14. M.A. Hungaro Duarte, P.G. Minotti, C.T. Rodrigues, R.O. Zapata, C.M. Bramante, M. Tanomaru Filho, R.R. Vivan, I. Gomes de Moraes, F. Bombarda de Andrade, Effect of different radiopacifying agents on the physicochemical properties of white Portland cement and white mineral trioxide aggregate. J. Endod. 38(3), 394–397 (2012). https://doi.org/10.1016/j.joen.2011.11.005

    Article  PubMed  Google Scholar 

  15. H.M.A. Ahmed, M.A. Saghiri, in Biomaterials in Endodontics. ed. by Z. Khurshid, M.S. Zafar, S. Najeeb (Woodhead Publishing, Elsevier, Sawston, 2022), pp.227–250

    Chapter  Google Scholar 

  16. M.S. Safavi, F.C. Walsh, L. Visai, J. Khalil-Allafi, Progress in niobium oxide-containing coatings for biomedical applications: a critical review. ACS Omega 7(11), 9088–9107 (2022). https://doi.org/10.1021/acsomega.2c00440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. T.C. Senocak, K.V. Ezirmik, F. Aysin, N. Simsek Ozek, S. Cengiz, Niobium-oxynitride coatings for biomedical applications: its antibacterial effects and in vitro cytotoxicity. Mater. Sci. Eng. C 120, 111662 (2021). https://doi.org/10.1016/j.msec.2020.111662

    Article  CAS  Google Scholar 

  18. N.H. Marins, B.E.J. Lee, R.M.E. Silve, A. Raghavan, N.L. Villarreal Carreño, K. Grandfield, Niobium pentoxide and hydroxyapatite particle loaded electrospun polycaprolactone/gelatin membranes for bone tissue engineering. Colloids Surf. B 182, 110386 (2019). https://doi.org/10.1016/j.colsurfb.2019.110386

    Article  CAS  Google Scholar 

  19. J.H. Lopes, L.P. Souza, J.A. Domingues, F.V. Ferreira, M. de Alencar Hausen, J.A. Camilli, R.A. Martin, E.A. de Rezende Duek, I.O. Mazali, C.A. Bertran, In vitro and in vivo osteogenic potential of niobium-doped 45S5 bioactive glass: a comparative study. J. Biomed. Mater. Res. B 108(4), 1372–1387 (2020). https://doi.org/10.1002/jbm.b.34486

    Article  CAS  Google Scholar 

  20. H.J. Kiyochi Junior, A.G. Candido, T.G.M. Bonadio, J.A. da Cruz, M.L. Baesso, W.R. Weinand, L. Hernandes, In vivo evaluation of interactions between biphasic calcium phosphate (BCP)–niobium pentoxide (Nb(2)O(5)) nanocomposite and tissues using a rat critical-size calvarial defect model. J. Mater. Sci. Mater. Med. 31(8), 71 (2020). https://doi.org/10.1007/s10856-020-06414-5

    Article  CAS  PubMed  Google Scholar 

  21. S.T. Rajan, M. Das, A. Arockiarajan, Biocompatibility and corrosion evaluation of niobium oxide coated AZ31B alloy for biodegradable implants. Colloids Surf. B 212, 112342 (2022). https://doi.org/10.1016/j.colsurfb.2022.112342

    Article  CAS  Google Scholar 

  22. H. Matsuno, A. Yokoyama, F. Watari, M. Uo, T. Kawasaki, Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium. Biomaterials 22(11), 1253–1262 (2001). https://doi.org/10.1016/s0142-9612(00)00275-1

    Article  CAS  PubMed  Google Scholar 

  23. R. Gulzar, P. Ajitha, H. Subbaiyan, Effect of addition of bismuth oxide, zirconium oxide nanoparticles and niobium oxide nanoparticles to Portland cement on the proliferation and migration of dental pulp stem cells. Int. J. Dent. Oral Sci. 8(8), 3578 (2021)

    Article  Google Scholar 

  24. V.C.B. Leitune, A. Takimi, F.M. Collares, P.D. Santos, C. Provenzi, C.P. Bergmann, S.M.W. Samuel, Niobium pentoxide as a new filler for methacrylate-based root canal sealers. Int. Endod. J. 46(3), 205–210 (2013). https://doi.org/10.1111/j.1365-2591.2012.02107.x

    Article  CAS  PubMed  Google Scholar 

  25. J. Xiong, Y. Li, P.D. Hodgson, C. Wen, In vitro osteoblast-like cell proliferation on nano-hydroxyapatite coatings with different morphologies on a titanium–niobium shape memory alloy. J. Biomed. Mater. Res. A 95(3), 766–773 (2010). https://doi.org/10.1002/jbm.a.32903

    Article  CAS  PubMed  Google Scholar 

  26. A. Yolun, M. Şimşek, M. Kaya, E.E. Annaç, M. Köm, Ö. Çakmak, Fabrication, characterization, and in vivo biocompatibility evaluation of titanium–niobium implants. Proc. Inst. Mech. Eng. H 235(1), 99–108 (2021). https://doi.org/10.1177/0954411920960854

    Article  PubMed  Google Scholar 

  27. E. Audouard, L. Rousselot, M. Folcher, N. Cartier, F. Piguet, Optimized protocol for subcutaneous implantation of encapsulated cells device and evaluation of biocompatibility. Front. Bioeng. Biotechnol. 9, 620967 (2021). https://doi.org/10.3389/fbioe.2021.620967

    Article  PubMed  PubMed Central  Google Scholar 

  28. O. Lopes, V. De Mendonça, F. Silva, E. Paris, C. Ribeiro, Óxidos de Nióbio: Uma Visão Sobre a Síntese Do Nb2O5 e Sua Aplicação em Fotocatálise Heterogênea. Quim. Nova 38(1), 106–117 (2015). https://doi.org/10.5935/0100-4042.20140280

    Article  CAS  Google Scholar 

  29. S. Ganguly, S. Margel, A review on synthesis methods of phyllosilicate- and graphene-filled composite hydrogels. J. Compos. Sci. 6(1), 15–37 (2022). https://doi.org/10.3390/jcs6010015

    Article  CAS  Google Scholar 

  30. S. Ganguly, N.C. Das, Synthesis of Mussel inspired polydopamine coated halloysite nanotubes based semi-IPN: an approach to fine tuning in drug release and mechanical toughening. Macromol. Symp. 382, 1800076 (2018). https://doi.org/10.1002/masy.201800076

    Article  CAS  Google Scholar 

  31. J. Camilleri, A. Cutajar, B. Mallia, Hydration characteristics of zirconium oxide replaced Portland cement for use as a root-end filling material. Dent. Mater. 27(8), 845–854 (2011). https://doi.org/10.1016/j.dental.2011.04.011

    Article  CAS  PubMed  Google Scholar 

  32. J. Camilleri, Hydration mechanisms of mineral trioxide aggregate. Int. Endod. J. 40(6), 462–470 (2007). https://doi.org/10.1111/j.1365-2591.2007.01248.x

    Article  CAS  PubMed  Google Scholar 

  33. S.B. Pagar, T.N. Ghorude, M.D. Deshpande, K. SenthilKannan, Facile fabrication of room temperature based H2S gas sensor using ZTO-Ag@ PPy hybrid nanocomposite. J. Inorg. Organomet. Polym. Mater. 33, 2752–2764 (2023). https://doi.org/10.1007/s10904-023-02650-8

    Article  CAS  Google Scholar 

  34. E.T. Koh, M. Torabinejad, T.R. Pitt Ford, K. Brady, F. McDonald, Mineral trioxide aggregate stimulates a biological response in human osteoblasts. J. Biomed. Mater. Res. 37(3), 432–439 (1997). https://doi.org/10.1002/(sici)1097-4636(19971205)37:3%3c432::aid-jbm14%3e3.0.co;2-d

    Article  CAS  PubMed  Google Scholar 

  35. E. Diamanti, N.P. Kerezoudis, D.B. Gakis, V. Tsatsas, Chemical composition and surface characteristics of grey and new white ProRoot MTA. J. Endod. 36, 946–947 (2003)

    Google Scholar 

  36. Y.C. Hwang, D.H. Kim, I.N. Hwang, S.J. Song, Y.J. Park, J.T. Koh, H.H. Son, W.M. Oh, Chemical constitution, physical properties, and biocompatibility of experimentally manufactured Portland cement. J. Endod. 37(1), 58–62 (2011). https://doi.org/10.1016/j.joen.2010.09.004

    Article  PubMed  Google Scholar 

  37. J. Camilleri, Characterization of hydration products of mineral trioxide aggregate. Int. Endod. J. 41(5), 408–417 (2008). https://doi.org/10.1111/j.1365-2591.2007.01370.x

    Article  CAS  PubMed  Google Scholar 

  38. N. Balamurugapandian, S. Lavanya, K. Senthil Kannan, J. Juliet Josephine Joy, Synthesis, characterizations of HDTDHP macro-crystals by experimental-electrical, electronic and computational structural proviso for opto-electronic and photonic utilities. ECS J. Solid State Sci. Technol. (2023). https://doi.org/10.1149/2162-8777/acfd5d

    Article  Google Scholar 

  39. A. Vanitha, T. Jayanalina, K. Reema, P. Renuka, K.V. Sindhu, M. Guru Prasath, G. Arokkiya Vincy, P. Sasikumar, M. Vimalan, K. SenthilKannan, Synthesis, characterizations of macro, micro, irradiated crystals of KDP, the standard non-linear optical reference material for mechano, photonic, electronic uses. Chem. Afr. 6(6), 3207–3216 (2023). https://doi.org/10.1007/s42250-023-00700-9

    Article  CAS  Google Scholar 

  40. N. Balamurugapandian, S. Christy, K. SenthilKannan, M. Vimalan, Synthesis, macro-dielectric, electronic µ-influx, voltage controlling and computational studies of novel aromatic cyclic AMPF crystals. Polycycl. Aromat. Compd. (2023). https://doi.org/10.1080/10406638.2023.2223337

    Article  Google Scholar 

  41. I. Islam, H.K. Chng, A.U. Yap, X-ray diffraction analysis of mineral trioxide aggregate and Portland cement. Int. Endod. J. 39(3), 220–225 (2006). https://doi.org/10.1111/j.1365-2591.2006.01077.x

    Article  CAS  PubMed  Google Scholar 

  42. F.B. Basturk, M.H. Nekoofar, M. Gunday, P.M.H. Dummer, X-ray diffraction analysis of MTA mixed and placed with various techniques. Clin. Oral Investig. 22(4), 1675–1680 (2018). https://doi.org/10.1007/s00784-017-2241-9

    Article  CAS  PubMed  Google Scholar 

  43. M. Mizuno, Y. Banzai, Calcium ion release from calcium hydroxide stimulated fibronectin gene expression in dental pulp cells and the differentiation of dental pulp cells to mineralized tissue forming cells by fibronectin. Int. Endod. J. 41(11), 933–938 (2008). https://doi.org/10.1111/j.1365-2591.2008.01420.x

    Article  CAS  PubMed  Google Scholar 

  44. A.C.R. Rocha, G.H. Padrón, M.V.G. Garduño, R.L.G. Aranda, Physicochemical analysis of MTA Angelus® and Biodentine® conducted with X ray diffraction, dispersive energy spectrometry, X ray fluorescence, scanning electron microscope and infrared spectroscopy. Rev. Odontol. Mex. 19(3), 174–180 (2015). https://doi.org/10.1016/j.rodmex.2015.07.004

    Article  Google Scholar 

  45. S.B. Pagar, T.N. Ghorude, M.P. Nikolova, K. SenthilKannan, Synthesis, physical, chemical, biological, mechanical and electronic studies of polypyrrole (PPy) of versatile scales for electro-mechano, pharmaceutical utilities. Heliyon 9(9), e20086 (2023). https://doi.org/10.1016/j.heliyon.2023.e20086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. A.P.F. Guarnier, Caracterização Química e Citotoxicidade de Cimentos Endodônticos Biocerâmicos. Dissertação, Programa de Pós-graduação em Odontologia, Nova Friburgo (2019). https://app.uff.br/riuff;/handle/1/12685. Accessed 2 Oct 2023

  47. E. Kuzielová, M. Slaný, M. Žemlička, J. Másilko, M.T. Palou, Phase composition of silica fume–Portland cement systems formed under hydrothermal curing evaluated by FTIR, XRD, and TGA. Materials (Basel) 14(11), 2786 (2021). https://doi.org/10.3390/ma14112786

    Article  CAS  PubMed  Google Scholar 

  48. G.F. Silva, M. Tanomaru-Filho, M.I. Bernardi, J.M. Guerreiro-Tanomaru, P.S. Cerri, Niobium pentoxide as radiopacifying agent of calcium silicate-based material: evaluation of physicochemical and biological properties. Clin. Oral Investig. 19(8), 2015–2025 (2015). https://doi.org/10.1007/s00784-015-1412-9

    Article  PubMed  Google Scholar 

  49. D. Subramanyam, M. Vasantharajan, Effect of oral tissue fluids on compressive strength of MTA and biodentine: an in vitro study. J. Clin. Diagn. Res. 11(4), 94–96 (2017). https://doi.org/10.7860/JCDR/2017/24510.9722

    Article  Google Scholar 

  50. M. Tanomaru-Filho, G.F. da Silva, M.A. Duarte, M. Gonçalves, J.M. Tanomaru, Radiopacity evaluation of root-end filling materials by digitization of images. J. Appl. Oral Sci. 16(6), 376–379 (2008). https://doi.org/10.1590/s1678-77572008000600004

    Article  PubMed  Google Scholar 

  51. T. Tsuge, Radiopacity of conventional, resin-modified glass ionomer, and resin-based luting materials. J. Oral Sci. 51(2), 223–230 (2009). https://doi.org/10.2334/josnusd.51.223

    Article  CAS  PubMed  Google Scholar 

  52. M. Parirokh, M. Torabinejad, P.M.H. Dummer, Mineral trioxide aggregate and other bioactive endodontic cements: an updated overview—Part I: vital pulp therapy. Int. Endod. J. 51(2), 177–205 (2018)

    Article  CAS  PubMed  Google Scholar 

  53. M. Torabinejad, A. Nosrat, P. Verma, O. Udochukwu, Regenerative endodontic treatment or mineral trioxide aggregate apical plug in teeth with necrotic pulps and open apices: a systematic review and meta-analysis. J. Endod. 43(11), 1806–1820 (2017). https://doi.org/10.1016/j.joen.2017.06.029

    Article  PubMed  Google Scholar 

  54. A. Cutajar, B. Mallia, S. Abela, J. Camilleri, Replacement of radiopacifier in mineral trioxide aggregate; characterization and determination of physical properties. Dent. Mater. 27(9), 879–891 (2011). https://doi.org/10.1016/j.dental.2011.04.012

    Article  CAS  PubMed  Google Scholar 

  55. E.A. Bortoluzzi, N.J. Broon, C.M. Bramante, W.T. Felippe, M. Tanomaru Filho, R.M. Esberard, The influence of calcium chloride on the setting time, solubility, disintegration, and pH of mineral trioxide aggregate and white Portland cement with a radiopacifier. J. Endod. 35(4), 550–554 (2009). https://doi.org/10.1016/j.joen.2008.12.018

    Article  PubMed  Google Scholar 

  56. C.M. Lima, A.K. Lima, M.G.D. Melo, G.A.A. Dória, M.R. Serafini, R.L.C. Albuquerque-Júnor, A.A.S. Araújo, Valores de referência hematológicos e bioquímicos de ratos (Rattus novergicus linhagem Wistar) provenientes do biotério da Universidade Tiradentes. Sci. Plena 10(3), 1–9 (2014)

    Google Scholar 

  57. F.E.G. Lima, Perfil bioquímico e hematológico de ratos e camundongos do biotério central da Universidade Federal do Ceará. Dissertação, Programa de Pós-graduação em Farmacologia, Fortaleza (2018). https://repositorio.ufc.br/bitstream/riufc/32198/1/2018_dis_fegdlima.pdf. Accessed 2 March 2023

  58. M. Dadsetan, J.A. Jones, A. Hiltner, J.M. Anderson, Surface chemistry mediates adhesive structure, cytoskeletal organization, and fusion of macrophages. J. Biomed. Mater. Res. A 71(3), 439–448 (2004). https://doi.org/10.1002/jbm.a.30165

    Article  CAS  PubMed  Google Scholar 

  59. Z. Sheikh, P.J. Brooks, O. Barzilay, N. Fine, M. Glogauer, Macrophages, foreign body giant cells and their response to implantable biomaterials. Materials (Basel) 8(9), 5671–5701 (2015). https://doi.org/10.3390/ma8095269

    Article  CAS  PubMed  Google Scholar 

  60. R. Holland, V. de Souza, M.J. Nery, J.A. Otoboni Filho, P.F. Bernabé, E. Dezan Júnior, Reaction of rat connective tissue to implanted dentin tubes filled with mineral trioxide aggregate or calcium hydroxide. J. Endod. 25(3), 161–166 (1999). https://doi.org/10.1016/s0099-2399(99)80134-4

    Article  CAS  PubMed  Google Scholar 

  61. S. Watanabe, Avaliação da biocompatibilidade e citotoxicidade dos cimentos: Endo-COM-Sealer®, Sealapex® e Ângelus MTA®. Dissertação, Programa de Pós-graduação em Odontologia, Araçatuba (2019). https://repositorio.unesp.br/items/ee1df86d-9773-4e91-a00c-87a299f9a56b. Accessed 2 Oct 2023

  62. D. Halliday, R. Resnick, J. Walker, Fundamentos de física: Óptica e física moderna, 10th edn. (LTC, Rio de Janeiro, 2016)

    Google Scholar 

  63. C. Nico, T. Monteiro, M.P.F. Graça, Niobium oxides and niobates physical properties: review and prospects. Prog. Mater. Sci. 80, 1–37 (2016). https://doi.org/10.1016/j.pmatsci.2016.02.001

    Article  CAS  Google Scholar 

  64. N. Nagata, M.I.M.S. Bueno, P.G. Peralta-Zamora, Métodos matemáticos para correção de interferências espectrais e efeitos interelementos na análise quantitativa por fluorescência de raios-X. Quim. Nova 24(4), 531–539 (2001). https://doi.org/10.1590/S0100-40422001000400015

    Article  CAS  Google Scholar 

  65. W.N. Arifin, W.M. Zahiruddin, Sample size calculation in animal studies using resource equation approach. Malays. J. Med. Sci. 24(5), 101–105 (2017). https://doi.org/10.21315/mjms2017.24.5.11

    Article  PubMed  PubMed Central  Google Scholar 

  66. M. Torabinejad, T.F. Watson, T.R. Pitt Ford, Sealing ability of a mineral trioxide aggregate when used as a root end filling material. J. Endod. 19(12), 591–595 (1993). https://doi.org/10.1016/S0099-2399(06)80271-2

    Article  CAS  PubMed  Google Scholar 

  67. G.M. Cavalcante, R.J. Sousa de Paula, L.P. Souza, F.B. Sousa, M.R. Mota, A.P. Alves, Experimental model of traumatic ulcer in the cheek mucosa of rats. Acta Cir. Bras. 26(3), 227–234 (2011). https://doi.org/10.1590/s0102-86502011000300012

    Article  PubMed  Google Scholar 

  68. F. Benetti, O.A. Queiroz, Í.L. Cosme-Silva, L.C. Conti, S.H.P. Oliveira, L.T.A. Cintra, Cytotoxicity, biocompatibility and biomineralization of a new ready-for-use bioceramic repair material. Braz. Dent. J. 30(4), 325–332 (2019). https://doi.org/10.1590/0103-6440201902457

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

UFRGS; PROCAD Amazônia-UFPA.

Funding

This study was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPQ Number 304382/2020-5, CNPQ Number 401672/2023-9); PROCAD Amazônia-CAPES (nº 23038.005350/2018-78).

Author information

Authors and Affiliations

Authors

Contributions

RAS, RVSA, AAM, VSA, AASJ, EGN, AOWN, GSB, FMC, APNNA, RFCL, CSMR, FRD, RRL, SMA and AAA designed the study. RAS, RVSA, AAM, VSA, AASJ, EGN, AOWN, GSB, FMC, APNNA, RFCL, CSMR, FRD, RRL, AAA performed the idea, hypothesis and wrote the manuscript, which RAS, RVSA, AAM, VSA, AASJ, EGN, AOWN, GSB, FMC, APNNA, RFCL, CSMR, FRD, RRL, AAA supervised. RAS, RVSA, AAM, VSA, AASJ, EGN, AOWN, GSB, FMC, APNNA, RFCL, CSMR, FRD, RRL, SMA and AAA contributed to the analysis of results, which was further edited and revised.

Corresponding author

Correspondence to Aurigena Antunes de Araújo.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Ethical approval

The research protocol for this study's use of animals was authorized by the Ethical Committee for Animal Research of the Federal University of Rio Grande do Norte, Brazil (CEUA n° 037/2021).

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, R.A., Andrade, R.V.S., Martins, A.A. et al. Portland cement associated with niobium is evidenced by the presence of calcium crystals and biocompatibility in the rat subcutaneous tissue. Journal of Materials Research (2024). https://doi.org/10.1557/s43578-024-01349-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/s43578-024-01349-x

Keywords

Navigation