Skip to main content
Log in

Performance evaluation of polysulfone-based membranes produced with a green solvent

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Finding eco-friendly solvents that can replace conventional toxic ones (N-methyl-2-pyrrolidone and dimethylacetamide) in the production of polymeric membranes is of great interest. In this study, membranes were produced using the phase inversion technique using polysulfone, polyvinylpyrrolidone, and Cyrene—a recently developed solvent, whose physicochemical profile is comparable to conventional ones, but is biodegradable, non-toxic, and eco-friendly. The resulting membranes were characterized regarding their morphological and structural properties, permeation performance, rejection of reference solutes and an emerging contaminant, and antifouling performance. Scanning electron microscopy, contact angle determination, Fourier transform infrared spectroscopy, and filtration tests were accomplished for that. It was possible to use Cyrene to produce polysulfone-based membranes, in which the one with 5% polyvinylpyrrolidone was the membrane with the highest permeability. Conversely, the membrane without polyvinylpyrrolidone and with a 30-min heat treatment achieved 73% rejection of the emerging contaminant evaluated.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. T. Benvenuti, A. Giacobbo, K. Santana Barros, T. Scarazzato, C. de M. da Trindade: in Advancement in Polymer-Based Membranes for Water Remediation (2022). https://doi.org/10.1016/B978-0-323-88514-0.00014-0

  2. A. Giacobbo, A.M. Bernardes, Membrane separation process in wastewater and water purification. Membranes 12(3), 259 (2022). https://doi.org/10.3390/membranes12030259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. N. Singh, R. Srivastava, T. Kanda, S. Yadav, R. Prajapati, S. Yadav, K.N. Tiwari, N. Atri, Essential oils: a “potential green” alternative in pharmaceutical, nutritional and agricultural sectors. Bioactivities 2(1), 1 (2024). https://doi.org/10.47352/bioactivities.2963-654X.197

    Article  Google Scholar 

  4. X. Jiang, W.F. Yong, J. Gao, D.D. Shao, S.P. Sun, Understanding the role of substrates on thin film composite membranes: a green solvent approach with TamiSolve® NxG. J. Membr. Sci. (2021). https://doi.org/10.1016/j.memsci.2021.119530

    Article  Google Scholar 

  5. Y.F. Ong, Y.T. Wong, P.V. Chai, Green synthesis of graphene oxide polysulfone membrane using dimethyl sulfoxide as green solvent. Mater. Today Proc. (2022). https://doi.org/10.1016/j.matpr.2022.06.010

    Article  Google Scholar 

  6. S. Jiang, H. Qian, P. Zhang, C. Xu, K. Li, Facile membrane preparation strategy to reinforce permeability of polyethersulfone (PES) micro-ultrafiltration membrane for drinking water treatment. J. Mater. Res. (2023). https://doi.org/10.1557/s43578-023-00978-y

    Article  Google Scholar 

  7. M.S. Jyothi, M. Padaki, R. Geetha Balakrishna, R. Krishna Pai, Synthesis and design of PSf/TiO2 composite membranes for reduction of chromium (VI): stability and reuse of the product and the process. J. Mater. Res. (2014). https://doi.org/10.1557/jmr.2014.169

    Article  Google Scholar 

  8. N.Y. Abu-Thabit, S.A. Ali, S.M.J. Zaidi, K. Mezghani, Novel sulfonated poly(ether ether ketone)/phosphonated polysulfone polymer blends for proton conducting membranes. J. Mater. Res.. (2012). https://doi.org/10.1557/jmr.2012.145

    Article  Google Scholar 

  9. United States Environmental Protection Agency (EPA), Risk Evaluation for N-Methylpyrrolidone (NMP) (2022)

  10. A. Venault, H.N. Aini, T.A. Galeta, Y. Chang, Using the dimethyl sulfoxide green solvent for the making of antifouling PEGylated membranes by the vapor-induced phase separation process. J. Membr. Sci. Lett. (2022). https://doi.org/10.1016/j.memlet.2022.100025

    Article  Google Scholar 

  11. Y.X. Foong, L.H. Yew, P.V. Chai, Green approaches to polysulfone based membrane preparation via dimethyl sulfoxide and eco-friendly natural additive gum Arabic. Mater. Today Proc. 46(Part 5), 2092 (2021). https://doi.org/10.1016/j.matpr.2021.04.470

    Article  CAS  Google Scholar 

  12. United Nations: Transforming Our World, The 2030 Agenda for Sustainable Development (New York, 2015)

  13. Y.S. Kurniawan, K.T.A. Priyangga, P.A. Krisbiantoro, A.C. Imawan, Green chemistry influences in organic synthesis: a review. J. Multidiscip. Appl. Nat. Sci. (2021). https://doi.org/10.47352/jmans.v1i1.2

    Article  Google Scholar 

  14. P. Tomietto, F. Russo, F. Galiano, P. Loulergue, S. Salerno, L. Paugam, J.L. Audic, L. De Bartolo, A. Figoli, Sustainable fabrication and pervaporation application of bio-based membranes: combining a polyhydroxyalkanoate (PHA) as biopolymer and CyreneTM as green solvent. J. Membr. Sci. (2022). https://doi.org/10.1016/j.memsci.2021.120061

    Article  Google Scholar 

  15. T. Marino, F. Galiano, A. Molino, A. Figoli, New frontiers in sustainable membrane preparation: Cyrene™ as green bioderived solvent. J. Membr. Sci. 580, 224 (2019). https://doi.org/10.1016/j.memsci.2019.03.034

    Article  CAS  Google Scholar 

  16. N.A. Stini, P.L. Gkizis, C.G. Kokotos, Cyrene: a bio-based novel and sustainable solvent for organic synthesis. Green Chem. (2022). https://doi.org/10.1039/D2GC02332F

    Article  Google Scholar 

  17. H.H. Wang, J.T. Jung, J.F. Kim, S. Kim, E. Drioli, Y.M. Lee, A novel green solvent alternative for polymeric membrane preparation via nonsolvent-induced phase separation (NIPS). J. Membr. Sci. (2019). https://doi.org/10.1016/j.memsci.2018.12.051

    Article  Google Scholar 

  18. H. Wu, L. Wang, W. Xu, Z. Xu, G. Zhang, Preparation of a CAB−GO/PES mixed matrix ultrafiltration membrane and its antifouling performance. Membranes (2023). https://doi.org/10.3390/membranes13020241

    Article  PubMed  PubMed Central  Google Scholar 

  19. R.A. Milescu, C.R. McElroy, T.J. Farmer, P.M. Williams, M.J. Walters, J.H. Clark, Fabrication of PES/PVP water filtration membranes using Cyrene®, a safer bio-based polar aprotic solvent. Adv. Polym. Technol. 2019, 9692859 (2019). https://doi.org/10.1155/2019/9692859

    Article  CAS  Google Scholar 

  20. C. Kahrs, J. Schwellenbach, Membrane formation via non-solvent induced phase separation using sustainable solvents: a comparative study. Polymer (Guildf) (2020). https://doi.org/10.1016/j.polymer.2019.122071

    Article  Google Scholar 

  21. N. Bogoni Júnior, Preparação e Caracterização de Membranas de Polisulfona-Poliuretano Para Recuperação de Água de Processos Têxteis Industriais Simulados, PhD Thesis, University of Caxias do Sul (UCS) (2020)

  22. X. Li, H. Bin Sun, X. Sun, Polysulfone grafted with anthraquinone-hydroanthraquinone redox as a flexible membrane electrode for aqueous batteries. Polymer (Guildf) (2021). https://doi.org/10.1016/j.polymer.2021.124245

    Article  Google Scholar 

  23. L. Li, M. Feng, M. Wang, Z. Jiao, J. Li, L. Dong, F. Yan, Crown ether functionalized polysulfone membrane coupling with electric field for Li+ selective separation. J. Taiwan Inst. Chem. Eng. (2021). https://doi.org/10.1016/j.jtice.2021.05.041

    Article  Google Scholar 

  24. T. dos Santos, Preparação e Caracterização de Membranas Compósitas Polisulfona/Material Celulósico Como Barreira Seletiva, University of Caxias do Sul (2011)

  25. D. Njobuenwu, Determination of contact angle from contact area of liquid droplet spreading on solid substrate. Leonardo Electron. J. Pract. Technol. 6(10), 29 (2007)

    Google Scholar 

  26. S.A. Al Malek, M.N. Abu Seman, D. Johnson, N. Hilal, Formation and characterization of polyethersulfone membranes using different concentrations of polyvinylpyrrolidone. Desalination (2012). https://doi.org/10.1016/j.desal.2011.12.006

    Article  Google Scholar 

  27. Letícia Mendes de Córdova, Avaliação Das Propriedades de Membranas de Quitosana Contendo Nanocristais de Celulose, Federal University of Santa Catarina (2019)

  28. R. Goyat, J. Singh, A. Umar, Y. Saharan, A.A. Ibrahim, S. Akbar, S. Baskoutas, Synthesis and characterization of nanocomposite based polymeric membrane (PES/PVP/GO-TiO2) and performance evaluation for the removal of various antibiotics (amoxicillin, azithromycin & ciprofloxacin) from aqueous solution. Chemosphere 353, 141542 (2024). https://doi.org/10.1016/j.chemosphere.2024.141542

    Article  CAS  PubMed  Google Scholar 

  29. E. Elele, Y. Shen, J. Tang, Q. Lei, B. Khusid, G. Tkacik, C. Carbrello, Mechanical properties of polymeric microfiltration membranes. J. Membr. Sci. (2019). https://doi.org/10.1016/j.memsci.2019.117351

    Article  Google Scholar 

  30. G.L. Bernardo, Avaliação Da Variabilidade Experimental Nos Parâmetros de Resposta de Membranas de Ultrafiltração, MSc Thesis, Federal University of Rio Grande do Sul (2017)

  31. D.I. de Souza, A. Giacobbo, Ed.S. Fernandes, M.A.S. Rodrigues, M.N. de Pinho, A.M. Bernardes, Experimental design as a tool for optimizing and predicting the nanofiltration performance by treating antibiotic-containing wastewater. Membranes 10(7), 156 (2020). https://doi.org/10.3390/membranes10070156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. T. Anjum, R. Tamime, A.L. Khan, Mixed-matrix membranes comprising of polysulfone and porous uio-66, zeolite 4a, and their combination: preparation, removal of humic acid, and antifouling properties. Membranes (2020). https://doi.org/10.3390/membranes10120393

    Article  PubMed  PubMed Central  Google Scholar 

  33. F. Kong, L. You, D. Zhang, G. Sun, J. Chen, Facile preparation of dense polysulfone UF membranes with enhanced salt rejection by post-heating. Membranes 13(9), 759 (2023). https://doi.org/10.3390/membranes13090759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. A. Karimi, A. Khataee, V. Vatanpour, M. Safarpour, The effect of different solvents on the morphology and performance of the ZIF-8 modified PVDF ultrafiltration membranes. Sep. Purif. Technol. (2020). https://doi.org/10.1016/j.seppur.2020.117548

    Article  Google Scholar 

  35. A. Giacobbo, Recuperação de Polifenóis e Polissacarídeos de Efluentes Vinícolas Através de Processos de Separação Por Membranas, PhD Thesis, Universidade Federal do Rio Grande do Sul (2015)

  36. D.G. Sacilotto, J.S. Costa, J.Z. Ferreira, Superhydrophobic stearic acid deposited by dip-coating on AISI 304 stainless steel: electrochemical behavior in a saline solutions. Mater. Res. (2022). https://doi.org/10.1590/1980-5373-MR-2022-0268

    Article  Google Scholar 

  37. M. Kumar, H.M. Baniowda, N. Sreedhar, E. Curcio, H.A. Arafat, Fouling resistant, high flux, charge tunable hybrid ultrafiltration membranes using polymer chains grafted graphene oxide for NOM removal. Chem. Eng. J. (2021). https://doi.org/10.1016/j.cej.2020.127300

    Article  PubMed  PubMed Central  Google Scholar 

  38. ASTM, ASTM D882-18, Standard Test Method for Tensile Properties of Thin Plastic Sheeting (ASTM International West Conshohocken, PA, USA, 2018).

  39. A. Giacobbo, A. Meneguzzi, A.M. Bernardes, M.N. de Pinho, Pressure-driven membrane processes for the recovery of antioxidant compounds from winery effluents. J. Clean. Prod. 155, 172 (2017). https://doi.org/10.1016/j.jclepro.2016.07.033

    Article  CAS  Google Scholar 

  40. M. Brooks, Medscape Medical News, WebMD, LLC (2015)

  41. A. Giacobbo, I.F. Pasqualotto, RCd.C. Machado Filho, M. Minhalma, A.M. Bernardes, M.N. de Pinho, Ultrafiltration and nanofiltration for the removal of pharmaceutically active compounds from water: the effect of operating pressure on electrostatic solute—membrane interactions. Membranes 13(8), 743 (2023). https://doi.org/10.3390/membranes13080743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors thank the Brazilian government agencies (CAPES, CNPq, FINEP, and FAPERGS) and ERAMIN2 (FINEP – Brazil) for funding the research.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: A.P.C., A.G. and C.A.F.; methodology: A.P.C. and A.G.; validation: A.P.C. and A.G.; formal analysis: A.P.C.; resources, C.A.F., A.M.B., and A.G.; writing—original draft preparation: A.P.C. and A.G.; writing—review and editing: A.P.C., A.G., A.M.B., and C.A.F.; visualization: A.P.C., A.G., A.M.B., and C.A.F.; supervision: A.G. and C.A.F.; All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Andreza P. Cardoso or Alexandre Giacobbo.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cardoso, A.P., Giacobbo, A., Bernardes, A.M. et al. Performance evaluation of polysulfone-based membranes produced with a green solvent. Journal of Materials Research (2024). https://doi.org/10.1557/s43578-024-01327-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/s43578-024-01327-3

Keywords

Navigation