Skip to main content

Advertisement

Log in

Quantifying pore characteristics in polymer glass–ceramics composite scaffolds using micro-tomography

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Biomaterials used in bone tissue engineering should mimic the pore characteristics and micro-architectural features of bone to facilitate successful regeneration and repair of damaged tissue in vivo. The complete qualitative and quantitative analysis of pore characteristics in tissue engineering scaffolds remains a challenge. Compared to the other traditional methods, micro-tomography is a reliable, efficient, and non-destructive technique to assess micro-architectural characteristics in scaffolds. In this study, composite scaffolds comprising natural polymers (alginate, gelatin and chitosan) reinforced with glass–ceramic powder was fabricated using the freeze-drying technique. The micro-architectural features were analyzed with quantification of different parameters—pore size, pore shape, pore orientation, pore interconnectivity and fractal analysis. The scaffolds exhibited macro-porosity with good pore architecture and connectivity. The quantification of different parameters yielded promising results and micro-tomography proves to be an efficient tool for analyzing and quantifying pore characteristics in bone tissue engineering scaffolds.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data availability

The data used for the study are included within the article.

References

  1. P.X. Ma, Scaffolds for tissue fabrication. Mater. Today 7, 30–40 (2004). https://doi.org/10.1016/S1369-7021(04)00233-0

    Article  CAS  Google Scholar 

  2. K.J.L. Burg, S. Porter, J.F. Kellam, Biomaterial developments for bone tissue engineering. Biomaterials 21, 2347–2359 (2000). https://doi.org/10.1016/S0142-9612(00)00102-2

    Article  CAS  PubMed  Google Scholar 

  3. L.L. Hench, J.M. Polak, Third-generation biomedical materials. Science (80-) (2002). https://doi.org/10.1126/science.1067404

    Article  Google Scholar 

  4. A.I. Caplan, V.M. Goldberg, Principles of tissue engineered regeneration of skeletal tissues. Clin. Orthop. Relat. Res. (1999). https://doi.org/10.1097/00003086-199910001-00003

    Article  PubMed  Google Scholar 

  5. V. Karageorgiou, D. Kaplan, Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26, 5474–5491 (2005). https://doi.org/10.1016/j.biomaterials.2005.02.002

    Article  CAS  PubMed  Google Scholar 

  6. T. Russo, A. Gloria, V. D’Antò, U. D’Amora, G. Ametrano, F. Bollino, R. De Santis, G. Ausanio, M. Catauro, S. Rengo, L. Ambrosio, Poly(ε-caprolactone) reinforced with sol-gel synthesized organic-inorganic hybrid fillers as composite substrates for tissue engineering. J. Appl. Biomater. Biomech. 8, 146–152 (2010). https://doi.org/10.5301/JABB.2010.6094

    Article  CAS  PubMed  Google Scholar 

  7. A.S.P. Lin, T.H. Barrows, S.H. Cartmell, R.E. Guldberg, Microarchitectural and mechanical characterization of oriented porous polymer scaffolds. Biomaterials 24, 481–489 (2003). https://doi.org/10.1016/S0142-9612(02)00361-7

    Article  CAS  PubMed  Google Scholar 

  8. V. Guarino, F. Causa, L. Ambrosio, Porosity and mechanical properties relationship in PCL porous scaffolds. J. Appl. Biomater. Biomech. 5, 149–157 (2007). https://doi.org/10.1177/228080000700500303

    Article  CAS  PubMed  Google Scholar 

  9. J. Wu, Q. Zhao, J. Sun, Q. Zhou, Preparation of poly(ethylene glycol) aligned porous cryogels using a unidirectional freezing technique. Soft Matter 8, 3620–3626 (2012). https://doi.org/10.1039/c2sm07411g

    Article  CAS  Google Scholar 

  10. M. Costantini, C. Colosi, P. Mozetic, J. Jaroszewicz, A. Tosato, A. Rainer, M. Trombetta, W. Więszkowski, M. Dentini, A. Barbetta, Correlation between porous texture and cell seeding efficiency of gas foaming and microfluidic foaming scaffolds. Mater. Sci. Eng. C 62, 668–677 (2016). https://doi.org/10.1016/j.msec.2016.02.010

    Article  CAS  Google Scholar 

  11. J.S. Kaiser, M. Kamperman, E.J. de Souza, B. Schick, E. Arzt, Adhesion of biocompatible and biodegradable micropatterned surfaces. Int. J. Artif. Organs 34, 180–184 (2011). https://doi.org/10.5301/IJAO.2011.6393

    Article  CAS  PubMed  Google Scholar 

  12. S. Bertoldi, S. Farè, M.C. Tanzi, Assessment of scaffold porosity: The new route of micro-CT. J. Appl. Biomater. Biomech. 9, 165–175 (2011). https://doi.org/10.5301/JABB.2011.8863

    Article  PubMed  Google Scholar 

  13. M. Bartoš, T. Suchý, R. Foltán, Note on the use of different approaches to determine the pore sizes of tissue engineering scaffolds: What do we measure? Biomed. Eng. (2018). https://doi.org/10.1186/s12938-018-0543-z

    Article  Google Scholar 

  14. F. Peyrin, Evaluation of bone scaffolds by micro-CT, in: Osteoporos. Int., 2011: pp. 2043–2048. https://doi.org/10.1007/s00198-011-1609-y.

  15. S.T. Ho, D.W. Hutmacher, A comparison of micro CT with other techniques used in the characterization of scaffolds. Biomaterials 27, 1362–1376 (2006). https://doi.org/10.1016/j.biomaterials.2005.08.035

    Article  CAS  PubMed  Google Scholar 

  16. J.R. Jones, R.C. Atwood, G. Poologasundarampillai, S. Yue, P.D. Lee, Quantifying the 3D macrostructure of tissue scaffolds, in: J. Mater. Sci. Mater. Med., 2009: pp. 463–471. https://doi.org/10.1007/s10856-008-3597-9.

  17. F. Beltrame, R. Cancedda, B. Canesi, A. Crovace, M. Mastrogiacomo, R. Quarto, S. Scaglione, C. Valastro, F. Viti, A simple non invasive computerized method for the assessment of bone repair within osteoconductive porous bioceramic grafts. Biotechnol. Bioeng. 92, 189–198 (2005). https://doi.org/10.1002/bit.20591

    Article  CAS  PubMed  Google Scholar 

  18. N. Kotobuki, K. Ioku, D. Kawagoe, H. Fujimori, S. Goto, H. Ohgushi, Observation of osteogenic differentiation cascade of living mesenchymal stem cells on transparent hydroxyapatite ceramics. Biomaterials 26, 779–785 (2005). https://doi.org/10.1016/j.biomaterials.2004.03.020

    Article  CAS  PubMed  Google Scholar 

  19. C. Vitale-Brovarone, S. Di Nunzio, O. Bretcanu, E. Verné, Macroporous glass-ceramic materials with bioactive properties. J. Mater. Sci. Mater. Med. 15, 209–217 (2004). https://doi.org/10.1023/B:JMSM.0000015480.49061.e1

    Article  CAS  PubMed  Google Scholar 

  20. D.J. Mooney, D.F. Baldwin, N.P. Suh, J.P. Vacanti, R. Langer, Novel approach to fabricate porous sponges of poly(D, L-lactic-co-glycolic acid) without the use of organic solvents. Biomaterials (1996). https://doi.org/10.1016/0142-9612(96)87284-X

    Article  PubMed  Google Scholar 

  21. S.G. Kumbar, C. Laurencin, M. Deng, Natural and Synthetic Biomedical Polymers (Elsevier, Amsterdam, 2014)

    Google Scholar 

  22. J. Sun, H. Tan, Alginate-based biomaterials for regenerative medicine applications. Materials (Basel). 6, 1285–1309 (2013). https://doi.org/10.3390/ma6041285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. M.C. Echave, L.S. Burgo, J.L. Pedraz, G. Orive, Gelatin as biomaterial for tissue engineering. Curr. Pharm. Des. 23, 3567–3584 (2017). https://doi.org/10.2174/0929867324666170511123101

    Article  CAS  PubMed  Google Scholar 

  24. I.Y. Kim, S.J. Seo, H.S. Moon, M.K. Yoo, I.Y. Park, B.C. Kim, C.S. Cho, Chitosan and its derivatives for tissue engineering applications. Biotechnol. Adv. 26, 1–21 (2008). https://doi.org/10.1016/j.biotechadv.2007.07.009

    Article  CAS  PubMed  Google Scholar 

  25. A.R. Boccaccini, C. Fleck, D.W. Schubert, J.A. Roether, A. Philippart, A.R. Boccaccini, C. Fleck, D.W. Schubert, J.A. Roether, Toughening and functionalization of bioactive ceramic and glass bone scaffolds by biopolymer coatings and infiltration: A review of the last 5 years. Expert Rev. Med. Devices 12, 93–111 (2014). https://doi.org/10.1586/17434440.2015.958075

    Article  CAS  PubMed  Google Scholar 

  26. Q. Hou, D.W. Grijpma, J. Feijen, Preparation of interconnected highly porous polymeric structures by a replication and freeze-drying process. J. Biomed. Mater. Res. Part B (2003). https://doi.org/10.1002/jbm.b.10066

    Article  Google Scholar 

  27. M.K. Narbat, F. Orang, M.S. Hashtjin, A. Goudarzi, Fabrication of porous hydroxyapatite-gelatin composite scaffolds for bone tissue engineering. Iran. Biomed. J. 10, 215–223 (2006)

    CAS  Google Scholar 

  28. D.W. Hutmacher, Scaffolds in tissue engineering bone and cartilage. Biomaterials 21, 2529–2543 (2000). https://doi.org/10.1016/S0142-9612(00)00121-6

    Article  CAS  PubMed  Google Scholar 

  29. S.J. Hollister, Porous scaffold design for tissue engineering. Nat. Mater. 4, 518–524 (2005). https://doi.org/10.1038/nmat1421

    Article  CAS  PubMed  Google Scholar 

  30. Y. Kuboki, Q. Jin, H. Takita, Geometry of carriers controlling phenotypic expression in BMP-induced osteogenesis and chondrogenesis. J. Bone Jt. Surg. Am. 83 A Suppl, S101–S105 (2001)

    Google Scholar 

  31. E. Tsuruga, H. Takita, H. Itoh, Y. Wakisaka, Y. Kuboki, Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis. J. Biochem. 121, 317–324 (1997). https://doi.org/10.1093/oxfordjournals.jbchem.a021589

    Article  CAS  PubMed  Google Scholar 

  32. E.C. Shors, Coralline bone graft substitutes. Orthop. Clin. North Am. 30, 599–613 (1999). https://doi.org/10.1016/S0030-5898(05)70113-9

    Article  CAS  PubMed  Google Scholar 

  33. B.N. Singh, V. Veeresh, S.P. Mallick, S. Sinha, A. Rastogi, P. Srivastava, Generation of scaffold incorporated with nanobioglass encapsulated in chitosan/chondroitin sulfate complex for bone tissue engineering. Int. J. Biol. Macromol. (2020). https://doi.org/10.1016/j.ijbiomac.2020.02.173

    Article  PubMed  PubMed Central  Google Scholar 

  34. F. Polyak, G. Reich, Infrared spectroscopic study of the coil-helix transition of highly concentrated gelatin formulations. Eur. J. Pharm. Biopharm. (2019). https://doi.org/10.1016/j.ejpb.2019.04.010

    Article  PubMed  Google Scholar 

  35. F. Milano, A. Masi, M. Madaghiele, A. Sannino, L. Salvatore, N. Gallo, Current trends in gelatin-based drug delivery systems. Pharmaceutics (2023). https://doi.org/10.3390/pharmaceutics15051499

    Article  PubMed  PubMed Central  Google Scholar 

  36. C.S. Julie Chandra, S. Sasi, T.K. Bindu Sharmila, Material Applications of Gelatin, in: Handb. Biopolym., 2023. https://doi.org/10.1007/978-981-16-6603-2_28-1.

  37. S. Van Vlierberghe, G.J. Graulus, S.K. Samal, I. Van Nieuwenhove, P. Dubruel, Porous hydrogel biomedical foam scaffolds for tissue repair. Biomed. Foam. Tissue Eng. Appl. (2014). https://doi.org/10.1533/9780857097033.2.335

    Article  Google Scholar 

  38. P. Rivero-Ramos, M.G. Unthank, T. Sanz, M.D. Rodrigo, M. Benlloch-Tinoco, Synergistic depolymerisation of alginate and chitosan by high hydrostatic pressure (HHP) and pulsed electric fields (PEF) treatment in the presence of H2O2. Carbohydr. Polym. (2023). https://doi.org/10.1016/j.carbpol.2023.120999

    Article  PubMed  Google Scholar 

  39. M.I. Gariboldi, S.M. Best, Effect of ceramic scaffold architectural parameters on biological response. Front. Bioeng. Biotechnol. (2015). https://doi.org/10.3389/fbioe.2015.00151

    Article  PubMed  PubMed Central  Google Scholar 

  40. G. Hannink, J.J.C. Arts, Bioresorbability, porosity and mechanical strength of bone substitutes: What is optimal for bone regeneration? Injury 42, S22–S25 (2011). https://doi.org/10.1016/j.injury.2011.06.008

    Article  PubMed  Google Scholar 

  41. S.K. Lan Levengood, S.J. Polak, M.B. Wheeler, A.J. Maki, S.G. Clark, R.D. Jamison, A.J. Wagoner Johnson, Multiscale osteointegration as a new paradigm for the design of calcium phosphate scaffolds for bone regeneration. Biomaterials 31, 3552–3563 (2010). https://doi.org/10.1016/j.biomaterials.2010.01.052

    Article  CAS  PubMed  Google Scholar 

  42. C.M. Murphy, M.G. Haugh, F.J. O’Brien, The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials 31, 461–466 (2010). https://doi.org/10.1016/j.biomaterials.2009.09.063

    Article  CAS  PubMed  Google Scholar 

  43. F.J. O’Brien, B.A. Harley, I.V. Yannas, L.J. Gibson, The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials 26, 433–441 (2005). https://doi.org/10.1016/j.biomaterials.2004.02.052

    Article  CAS  PubMed  Google Scholar 

  44. S. Srinivasan, R. Jayasree, K.P.P. Chennazhi, S.V.V. Nair, R. Jayakumar, Biocompatible alginate/nano bioactive glass ceramic composite scaffolds for periodontal tissue regeneration. Carbohydr. Polym. 87, 274–283 (2012). https://doi.org/10.1016/j.carbpol.2011.07.058

    Article  CAS  PubMed  Google Scholar 

  45. H.W. Kim, J.C. Knowles, H.E. Kim, Hydroxyapatite and gelatin composite foams processed via novel freeze-drying and crosslinking for use as temporary hard tissue scaffolds. J. Biomed. Mater. Res. Part A 72, 136–145 (2005). https://doi.org/10.1002/jbm.a.30168

    Article  CAS  Google Scholar 

  46. K. Maji, S. Dasgupta, B. Kundu, A. Bissoyi, Development of gelatin-chitosan-hydroxyapatite based bioactive bone scaffold with controlled pore size and mechanical strength. J. Biomater. Sci. Polym. Ed. 26, 1190–1209 (2015). https://doi.org/10.1080/09205063.2015.1082809

    Article  CAS  PubMed  Google Scholar 

  47. K. Maji, S. Dasgupta, K. Pramanik, A. Bissoyi, Preparation and evaluation of gelatin-chitosan-nanobioglass 3D porous scaffold for bone tissue engineering. Int. J. Biomater. (2016). https://doi.org/10.1155/2016/9825659

    Article  PubMed  PubMed Central  Google Scholar 

  48. Y. Xu, J. Guan, Interaction of Cells with Polyurethane Scaffolds, in: Adv. Polyurethane Biomater., 2016: pp. 523–542. https://doi.org/10.1016/B978-0-08-100614-6.00018-4.

  49. E.H. Macdonald, Sedimentation and detrital gold, in: Handb. Gold Explor. Eval., 2007: pp. 195–266. https://doi.org/10.1533/9781845692544.195.

  50. C.M. Nelson, R.P. Jean, J.L. Tan, W.F. Liu, N.J. Sniadecki, A.A. Spector, C.S. Chen, Emergent patterns of growth controlled by multicellular form and mechanics. Proc. Natl. Acad. Sci. U.S.A. 102, 11594–11599 (2005). https://doi.org/10.1073/pnas.0502575102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. D. Veljović, R. Jančić-Hajneman, I. Balać, B. Jokić, S. Putić, R. Petrović, D. Janaćković, The effect of the shape and size of the pores on the mechanical properties of porous HAP-based bioceramics. Ceram. Int. 37, 471–479 (2011). https://doi.org/10.1016/j.ceramint.2010.09.014

    Article  CAS  Google Scholar 

  52. M. Nacucchi, F. De Pascalis, M. Scatto, L. Capodieci, R. Albertoni, Structural analysis of advanced polymeric foams by means of high resolution X-ray computed tomography. AIP Conf. Proc. (2016). https://doi.org/10.1063/1.4954492

    Article  Google Scholar 

  53. M.S. Rizvi, P. Kumar, D.S. Katti, A. Pal, Mathematical model of mechanical behavior of micro/nanofibrous materials designed for extracellular matrix substitutes. Acta Biomater. 8, 4111–4122 (2012). https://doi.org/10.1016/j.actbio.2012.07.025

    Article  CAS  PubMed  Google Scholar 

  54. G.C. Engelmayr, G.D. Papworth, S.C. Watkins, J.E. Mayer, M.S. Sacks, Guidance of engineered tissue collagen orientation by large-scale scaffold microstructures. J. Biomech. 39, 1819–1831 (2006). https://doi.org/10.1016/j.jbiomech.2005.05.020

    Article  PubMed  Google Scholar 

  55. B.B. Mandal, E.S. Gil, B. Panilaitis, D.L. Kaplan, Laminar silk scaffolds for aligned tissue fabrication. Macromol. Biosci. 13, 48–58 (2013). https://doi.org/10.1002/mabi.201200230

    Article  CAS  PubMed  Google Scholar 

  56. K.S. Halonen, M.E. Mononen, J.S. Jurvelin, J. Töyräs, R.K. Korhonen, Importance of depth-wise distribution of collagen and proteoglycans in articular cartilage-A 3D finite element study of stresses and strains in human knee joint. J. Biomech. 46, 1184–1192 (2013). https://doi.org/10.1016/j.jbiomech.2012.12.025

    Article  CAS  PubMed  Google Scholar 

  57. A. Arora, A. Kothari, D.S. Katti, Pore orientation mediated control of mechanical behavior of scaffolds and its application in cartilage-mimetic scaffold design. J. Mech. Behav. Biomed. Mater. 51, 169–183 (2015). https://doi.org/10.1016/j.jmbbm.2015.06.033

    Article  CAS  PubMed  Google Scholar 

  58. S. Blacher, V. Maquet, R. Jérôme, J.P. Pirard, A.R. Boccaccini, Study of the connectivity properties of Bioglass®-filled polylactide foam scaffolds by image analysis and impedance spectroscopy. Acta Biomater. 1, 565–574 (2005). https://doi.org/10.1016/j.actbio.2005.06.003

    Article  CAS  PubMed  Google Scholar 

  59. K.F. Leong, C.M. Cheah, C.K. Chua, Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials 24, 2363–2378 (2003). https://doi.org/10.1016/S0142-9612(03)00030-9

    Article  CAS  PubMed  Google Scholar 

  60. S.L. Ishaug-Riley, G.M. Crane-Kruger, M.J. Yaszemski, A.G. Mikos, Three-dimensional culture of rat calvarial osteoblasts in porous biodegradable polymers. Biomaterials 19, 1405–1412 (1998). https://doi.org/10.1016/S0142-9612(98)00021-0

    Article  CAS  PubMed  Google Scholar 

  61. A. Odgaard, H.J.G. Gundersen, Quantification of connectivity in cancellous bone, with special emphasis on 3-D reconstructions. Bone 14, 173–182 (1993). https://doi.org/10.1016/8756-3282(93)90245-6

    Article  CAS  PubMed  Google Scholar 

  62. L. Brabant, J. Vlassenbroeck, Y. De Witte, V. Cnudde, M.N. Boone, J. Dewanckele, L. Van Hoorebeke, Three-dimensional analysis of high-resolution X-ray computed tomography data with morpho+. Microsc. Microanal. 17, 252–263 (2011). https://doi.org/10.1017/S1431927610094389

    Article  CAS  PubMed  Google Scholar 

  63. C.H. Arns, M.A. Knackstedt, W.V. Pinczewski, K.R. Mecke, Euler-Poincaré characteristics of classes of disordered media. Phys. Rev. E 63, 311121–3111213 (2001). https://doi.org/10.1103/PhysRevE.63.031112

    Article  CAS  Google Scholar 

  64. S. Anuradha, K. Uma Maheswari, S. Swaminathan, Fabrication of uniaxially aligned 3D electrospun scaffolds for neural regeneration. Biomed. Mater. 6, 25004 (2011)

    Article  Google Scholar 

  65. K. Stuckensen, A. Schwab, M. Knauer, E. Muiños-López, F. Ehlicke, J. Reboredo, F. Granero-Moltó, U. Gbureck, F. Prósper, H. Walles, J. Groll, Tissue mimicry in morphology and composition promotes hierarchical matrix remodeling of invading stem cells in osteochondral and meniscus scaffolds. Adv. Mater. (2018). https://doi.org/10.1002/adma.201706754

    Article  PubMed  Google Scholar 

  66. P. Tayalia, C.R. Mendonca, T. Baldacchini, D.J. Mooney, E. Mazur, 3D cell-migration studies using two-photon engineered polymer scaffolds. Adv. Mater. 20, 4494–4498 (2008). https://doi.org/10.1002/adma.200801319

    Article  CAS  Google Scholar 

  67. C.H. Lee, H.J. Shin, I.H. Cho, Y.M. Kang, I.A. Kim, K.D. Park, J.W. Shin, Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast. Biomaterials 26, 1261–1270 (2005). https://doi.org/10.1016/j.biomaterials.2004.04.037

    Article  CAS  PubMed  Google Scholar 

  68. K. Stuckensen, J.M. Lamo-Espinosa, E. Muiños-López, P. Ripalda-Cemboráin, T. López-Martínez, E. Iglesias, G. Abizanda, I. Andreu, M. Flandes-Iparraguirre, J. Pons-Villanueva, R. Elizalde, J. Nickel, A. Ewald, U. Gbureck, F. Prósper, J. Groll, F. Granero-Moltó, Anisotropic cryostructured collagen scaffolds for efficient delivery of RhBMP-2 and enhanced bone regeneration. Materials (Basel) (2019). https://doi.org/10.3390/ma12193105

    Article  PubMed  Google Scholar 

  69. I. Sánchez, G. Uzcátegui, Fractals in dentistry. J. Dent. 39, 273–292 (2011). https://doi.org/10.1016/j.jdent.2011.01.010

    Article  PubMed  Google Scholar 

  70. J. Guédon, F. Autrusseau, Y. Amouriq, P. Bléry, J.-M. Bouler, P. Weiss, F.-X. Barbarin, T. Dallet, V. Dallerit, Exploring relationships between fractal dimension and trabecular bone characteristics, in: Med. Imaging 2012 Biomed. Appl. Mol. Struct. Funct. Imaging 2012: p. 831717. https://doi.org/10.1117/12.911164.

  71. D. Ulrich, B. van Rietbergen, A. Laib, P. R̈uegsegger, The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone. Bone 25, 55–60 (1999). https://doi.org/10.1016/S8756-3282(99)00098-8

    Article  CAS  PubMed  Google Scholar 

  72. J.L. Drummond, M. Thompson, B.J. Super, Fracture surface examination of dental ceramics using fractal analysis. Dent. Mater. 21, 586–589 (2005). https://doi.org/10.1016/j.dental.2004.12.002

    Article  CAS  PubMed  Google Scholar 

  73. J.J. Mecholsky, D.E. Passoja, K.S. Feinberg-Ringel, Quantitative analysis of brittle fracture surfaces using fractal geometry. J. Am. Ceram. Soc. 72, 60–65 (1989). https://doi.org/10.1111/j.1151-2916.1989.tb05954.x

    Article  CAS  Google Scholar 

  74. T. Uchiyama, T. Tanizawa, H. Muramatsu, N. Endo, H.E. Takahashi, T. Hara, Three-dimensional microstructural analysis of human trabecular bone in relation to its mechanical properties. Bone 25, 487–491 (1999). https://doi.org/10.1016/S8756-3282(99)00188-X

    Article  CAS  PubMed  Google Scholar 

  75. A. Thomas, J. Bera, Sol–gel synthesis and in vitro bioactivity of glass–ceramics in SiO2–CaO–Na2O–P2O5 system. J. Sol-Gel Sci. Technol. 80, 411–416 (2016). https://doi.org/10.1007/s10971-016-4110-4

    Article  CAS  Google Scholar 

  76. A. Thomas, J. Bera, Preparation and characterization of gelatin-bioactive glass ceramic scaffolds for bone tissue engineering. J. Biomater. Sci. Polym. Ed. 30, 1–19 (2019). https://doi.org/10.1080/09205063.2019.1587697

    Article  CAS  Google Scholar 

  77. A. Thomas, E. Johnson, A.K. Agrawal, J. Bera, Preparation and characterization of glass-ceramic reinforced alginate scaffolds for bone tissue engineering. J. Mater. Res. 34, 3798–3809 (2019). https://doi.org/10.1557/jmr.2019.343

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank RRCAT, Indore for providing experimental facility

Funding

This research received no specific grant from any funding agency.

Author information

Authors and Affiliations

Authors

Contributions

AT was involved in conceptualization, study design and execution of the work. AA and YSK were involved in data acquisition, analysis and interpretation. I PK and JB were involved in data validation and critical review of the manuscript.

Corresponding author

Correspondence to Ashley Thomas.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, A., Agarwal, A.K., Kashyap, Y.S. et al. Quantifying pore characteristics in polymer glass–ceramics composite scaffolds using micro-tomography. Journal of Materials Research 39, 1258–1272 (2024). https://doi.org/10.1557/s43578-024-01307-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-024-01307-7

Keywords

Navigation