Skip to main content
Log in

The effect of micro/nanostructures formed by laser ablation on the superhydrophobicity of AZ31B magnesium alloy

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Superhydrophobic surfaces can effectively enhance the corrosion resistance of magnesium alloys. This paper proposes a new method for preparing superhydrophobic surfaces based on the combination of laser processing and chemical-assisted thermal decomposition of stearic acid using pulse laser chemistry. Nanosecond pulse laser is used to etch the surface of 1.5 mm AZ31B magnesium alloy, and the influence of different laser power, etching spacing, and frequency on the superhydrophobic surface properties of AZ31B magnesium alloy is investigated by adjusting the parameters. Different surface micro-nano structures are manufactured by changing the pulse laser movement trajectory, and the influence of different surface micro-nano structures on the superhydrophobic properties of AZ31B magnesium alloy is explored. This paper analyzed the effects of micro-nano structures on the surface of AZ31B magnesium alloy using techniques such as electron microscopy and energy dispersive spectrometer. The corrosion resistance of magnesium alloy specimens treated by laser chemical processing is significantly improved.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this work are available within the article. Raw data that support the findings of the study are available from the corresponding author, upon reasonable request.

References

  1. D. Wei, J. Wang, Y. Liu, D. Wang, S. Li, H. Wang, Controllable superhydrophobic surfaces with tunable adhesion on Mg alloys by a simple etching method and its corrosion inhibition performance. Chem. Eng. J. 404, 126444 (2021). https://doi.org/10.1016/j.cej.2020.126444

    Article  CAS  Google Scholar 

  2. M. Jafari Eskandari, M. Araghchi, H. Daneshmand, Aluminum oxide nanotubes fabricated via laser ablation process: application as superhydrophobic surfaces. Optics Laser Technol. 155, 108420 (2022). https://doi.org/10.1016/j.optlastec.2022.108420

    Article  CAS  Google Scholar 

  3. D. Wei, J. Wang, H. Wang, Y. Liu, S. Li, D. Li, Anti-corrosion behaviour of superwetting structured surfaces on Mg-9Al-1Zn magnesium alloy. Appl. Surf. Sci. 483, 1017 (2019). https://doi.org/10.1016/j.apsusc.2019.03.286

    Article  ADS  CAS  Google Scholar 

  4. G. Xin, C. Wu, W. Liu, Y. Rong, Y. Huang, Anti-corrosion superhydrophobic surfaces of Al alloy based on micro-protrusion array structure fabricated by laser direct writing. J. Alloys Compds. 881, 160649 (2021). https://doi.org/10.1016/j.jallcom.2021.160649

    Article  CAS  Google Scholar 

  5. Z. Huang, Q. Yong, Z.-H. Xie, Stearic acid modified porous nickel-based coating on magnesium alloy AZ31 for high superhydrophobicity and corrosion resistance. Corros. Commun. 10, 38 (2023). https://doi.org/10.1016/j.corcom.2022.09.002

    Article  Google Scholar 

  6. Y.Q. Li, F. Li, F.W. Kang, H.Q. Du, Z.Y. Chen, Recent research and advances in extrusion forming of magnesium alloys: a review. J. Alloys Compds. 953, 170080 (2023). https://doi.org/10.1016/j.jallcom.2023.170080

    Article  CAS  Google Scholar 

  7. Y. Wu, G. Xu, T. Wang, K. Liu, J. Lu, D. Wang, Preparation of biomimetic hair-like composite coatings with water-collecting and superamphiphobic properties. Prog. Org. Coat. 158, 106372 (2021). https://doi.org/10.1016/j.porgcoat.2021.106372

    Article  CAS  Google Scholar 

  8. W. Rong, H. Zhang, Z. Mao, L. Chen, X. Liu, Stable drag reduction of anisotropic superhydrophobic/hydrophilic surfaces containing bioinspired micro/nanostructured arrays by laser ablation. Colloids Surf. A 622, 126712 (2021). https://doi.org/10.1016/j.colsurfa.2021.126712

    Article  CAS  Google Scholar 

  9. T. Xiao, K. Wei, Y. Wang, L. Jiang, P. Xiang, X. Li, X. Tan, Transparent and durable PDMS(O)/HDTMS anti-icing surfaces derived from candle soot. Surf. Coat. Technol. 445, 128717 (2022). https://doi.org/10.1016/j.surfcoat.2022.128717

    Article  CAS  Google Scholar 

  10. S. Li, M. Cai, Y. Liu, C. Wang, R. Yan, X. Chen, Constructing Cd0.5Zn0.5S/Bi2WO6 S-scheme heterojunction for boosted photocatalytic antibiotic oxidation and Cr(VI) reduction. Adv. Powder Mater. 2(1), 100073 (2023). https://doi.org/10.1016/j.apmate.2022.100073

    Article  Google Scholar 

  11. Y. Tang, Y. Cai, L. Wang, X. Luo, B. Wang, Q. Song, Z. Liu, Formation mechanism of superhydrophobicity of stainless steel by laser-assisted decomposition of stearic acid and its corrosion resistance. Optics Laser Technol. 153, 108190 (2022). https://doi.org/10.1016/j.optlastec.2022.108190

    Article  CAS  Google Scholar 

  12. H. Wan, S. Li, J. Li, T. Liu, J. Lin, J. Min, Wettability transition of metallic surfaces from laser-generated superhydrophilicity to water-induced superhydrophobicity via a facile and eco-friendly strategy. Mater. Des. 226, 111691 (2023). https://doi.org/10.1016/j.matdes.2023.111691

    Article  CAS  Google Scholar 

  13. H. Yang, K. Xu, C. Xu, D. Fan, Y. Cao, W. Xue, J. Pang, Femtosecond laser fabricated elastomeric superhydrophobic surface with stretching-enhanced water repellency. Nanoscale Res. Lett. 14(1), 333 (2019). https://doi.org/10.1186/s11671-019-3140-6

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. D.M. Ragheb, A.M. Abdel-Gaber, F.M. Mahgoub, M.E. Mohamed, Eco-friendly method for construction of superhydrophobic graphene-based coating on copper substrate and its corrosion resistance performance. Sci Rep. 12(1), 17929 (2022). https://doi.org/10.1038/s41598-022-22915-5

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. W. Wang, L. Lu, D. Zhang, Y. Yao, Y. Xie, Experimental and modeling study of laser induced silicon carbide/graphene on cotton cloth for superhydrophobic applications. Optics Laser Technol. 158, 108782 (2023). https://doi.org/10.1016/j.optlastec.2022.108782

    Article  CAS  Google Scholar 

  16. L. Shijie, C. Mingjie, L. Yanping, W. Chunchun, L. Kangle, C. Xiaobo, S-scheme photocatalyst TaON/Bi2WO6 nanofibers with oxygen vacancies for efficient abatement of antibiotics and Cr(VI): intermediate eco-toxicity analysis and mechanistic insights. Chin. J. Catal. (2022). https://doi.org/10.1016/S1872-2067(22)64106-8

    Article  Google Scholar 

  17. V.S. Saji, Recent progress in superhydrophobic and superamphiphobic coatings for magnesium and its alloys. J. Magn. Alloys 9(3), 748 (2021). https://doi.org/10.1016/j.jma.2021.01.005

    Article  CAS  Google Scholar 

  18. X. Fan, S. Song, Y. Shi, M. Cai, Y. Huang, B. Zhang, M. Zhu, Mechanochemical stable superhydrophobic coating toward lasting corrosion protection. Prog. Org. Coat. 178, 107478 (2023). https://doi.org/10.1016/j.porgcoat.2023.107478

    Article  CAS  Google Scholar 

  19. M.E. Mohamed, A. Ezzat, A.M. Abdel-Gaber, Fabrication of eco-friendly graphene-based superhydrophobic coating on steel substrate and its corrosion resistance, chemical and mechanical stability. Sci. Rep. 12(1), 10530 (2022). https://doi.org/10.1038/s41598-022-14353-0

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. M. Cai, Y. Liu, K. Dong, X. Chen, S. Li, Floatable S-scheme Bi2WO6/C3N4/carbon fiber cloth composite photocatalyst for efficient water decontamination. Chin. J. Catal. 52, 239 (2023). https://doi.org/10.1016/s1872-2067(23)64496-1

    Article  CAS  Google Scholar 

  21. S.-J. Zhang, D.-L. Cao, L.-K. Xu, J.-K. Tang, R.-Q. Meng, H.-D. Li, Corrosion resistance of a superhydrophobic dodecyltrimethoxysilane coating on magnesium hydroxide-pretreated magnesium alloy AZ31 by electrodeposition. Colloids Surf. A 625, 126914 (2021). https://doi.org/10.1016/j.colsurfa.2021.126914

    Article  CAS  Google Scholar 

  22. S. Faas, U. Bielke, R. Weber, T. Graf, Scaling the productivity of laser structuring processes using picosecond laser pulses at average powers of up to 420 W to produce superhydrophobic surfaces on stainless steel AISI 316L. Sci. Rep. 9(1), 1933 (2019). https://doi.org/10.1038/s41598-018-37867-y

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. C. Xu, Y. Luo, L. Zhou, Y. Bi, H. Sun, Fabrication of durable superhydrophobic stainless steel mesh with nano/micro flower-like morphologies for self-cleaning and efficient oil/water separation. J. Bionic Eng. 19(6), 1615 (2022). https://doi.org/10.1007/s42235-022-00231-y

    Article  Google Scholar 

  24. J. Zhang, Z. Kang, Effect of different liquid–solid contact models on the corrosion resistance of superhydrophobic magnesium surfaces. Corros. Sci. 87, 452 (2014). https://doi.org/10.1016/j.corsci.2014.07.010

    Article  CAS  Google Scholar 

  25. Y. Ouyang, Z. Chen, E. Guo, R. Qiu, X. Wang, H. Kang, T. Wang, Bioinspired superhydrophobic surface via one-step electrodeposition and its corrosion inhibition for Mg-Li alloy. Colloids Surf. A 648, 129145 (2022). https://doi.org/10.1016/j.colsurfa.2022.129145

    Article  CAS  Google Scholar 

  26. D. Meena Narayana Menon, M. Giardino, D. Janner, Tunable pulsewidth nanosecond laser texturing: from environment friendly superhydrophobic to superamphiphobic surfaces. Appl. Surf. Sci. 610, 155356 (2023). https://doi.org/10.1016/j.apsusc.2022.155356

    Article  CAS  Google Scholar 

  27. M. Backholm, D. Molpeceres, M. Vuckovac, H. Nurmi, M.J. Hokkanen, V. Jokinen, J.V.I. Timonen, R.H.A. Ras, Water droplet friction and rolling dynamics on superhydrophobic surfaces. Commun. Mater. (2020). https://doi.org/10.1038/s43246-020-00065-3

    Article  Google Scholar 

  28. J. Huang, Z. Xu, L. Peng, J. Liu, Experimental investigation on hydrophobic/superhydrophobic micro patterns: new manufacture method and performance. Mater. Today Commun. 33, 104666 (2022). https://doi.org/10.1016/j.mtcomm.2022.104666

    Article  CAS  Google Scholar 

  29. A.F. Obilor, M. Pacella, A. Wilson, V.V. Silberschmidt, Micro-texturing of polymer surfaces using lasers: a review. Int. J. Adv. Manuf. Technol. 120(1–2), 103 (2022). https://doi.org/10.1007/s00170-022-08731-1

    Article  Google Scholar 

  30. L.A.M. Carrascosa, R. Zarzuela, M. Botana-Galvín, F.J. Botana, M.J. Mosquera, Achieving superhydrophobic surfaces with tunable roughness on building materials via nanosecond laser texturing of silane/siloxane coatings. J. Build. Eng. 58, 104979 (2022). https://doi.org/10.1016/j.jobe.2022.104979

    Article  Google Scholar 

  31. S. Wang, Y. Wang, G. Cao, J. Chen, Y. Zou, B. Yang, J. Ouyang, D. Jia, Y. Zhou, Highly reliable double-layer coatings on magnesium alloy surfaces for robust superhydrophobicity, chemical durability and electrical property. Ceram. Int. 47(24), 35037 (2021). https://doi.org/10.1016/j.ceramint.2021.09.045

    Article  CAS  Google Scholar 

  32. S. Li, C. Wang, K. Dong, P. Zhang, X. Chen, X. Li, MIL-101(Fe)/BiOBr S-scheme photocatalyst for promoting photocatalytic abatement of Cr(VI) and enrofloxacin antibiotic: performance and mechanism. Chin. J. Catal. 51, 101 (2023). https://doi.org/10.1016/s1872-2067(23)64479-1

    Article  CAS  Google Scholar 

  33. S. Li, M. Cai, C. Wang, Y. Liu, Ta3N5/CdS core-shell S-scheme heterojunction nanofibers for efficient photocatalytic removal of antibiotic tetracycline and Cr(VI): performance and mechanism insights. Adv. Fiber Mater. 5(3), 994 (2023). https://doi.org/10.1007/s42765-022-00253-5

    Article  CAS  Google Scholar 

  34. L. Jiang, M. Han, J. Sun, M. Gong, Y. Lin, T. Xiao, P. Xiang, W. Chen, X. Tan, Strong mechanical and durable superhydrophobic photothermal MWCNTs/SiO2/PDMS/PVDF composite coating for anti-icing and de-icing. Prog. Org. Coat. 174, 107282 (2023). https://doi.org/10.1016/j.porgcoat.2022.107282

    Article  CAS  Google Scholar 

Download references

Funding

Funding was provided by Fundamental Research Funds for the Central Universities (Grant no. 2572021BC03), National Natural Science Foundation of China (Grant nos. 52371102 and 52105434), Natural Science Foundation of Heilongjiang Province (Grant no. LH2022C009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Zhang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Liu, Y., Zhang, Y. et al. The effect of micro/nanostructures formed by laser ablation on the superhydrophobicity of AZ31B magnesium alloy. Journal of Materials Research 39, 850–863 (2024). https://doi.org/10.1557/s43578-023-01275-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01275-4

Keywords

Navigation