Skip to main content
Log in

Investigation of photodetector and photovoltaic properties of H2Pc/CuO and H2Pc/ITO junctions produced with modified H2Pc

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this work, it was aimed to provide an alternative to organic-based photodiode detectors (OPDs), solar cell with the modified H2Pc organic thin film heterojunctions. For this purpose, the modified H2Pc organic thin film was grown on ITO/glass and CuOx/ITO/glass substrates via thermal evaporation method and their optoelectronic properties were compared with each other and other organic-based devices. The crucial optical parameters of the fabricated heterojunctions were determined in the wavelengths range of 300–800 nm. In order to perform electrical characterisation, Ag metal contacts were grown on the heterojunctions and Ag/H2Pc/ITO/Ag and Ag/H2Pc/CuOx/Ag devices were fabricated. Diode, photovoltaic and photodetector parameters of the fabricated devices were investigated in the applied potential of ± 3 V under dark and several light intensities. Ultimately, it can be stated that the fabricated devices may offer an alternative to OPDs and organic-based solar cell.Please check and confirm the author names and initials are correct. Also, kindly confirm the details in the metadata are correct.I confirm that the author names are correct

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

All data that support the findings of this study are included within the article (and any supplementary files).

References

  1. H. Bronstein et al., The role of chemical design in the performance of organic semiconductors. Nat. Rev. Chem. 4(2), 66–77 (2020)

    Article  CAS  PubMed  Google Scholar 

  2. V.V. Brus et al., Electrical and photoelectrical properties of P3HT/n-Si hybrid organic–inorganic heterojunction solar cells. Org. Electron. 14(11), 3109–3116 (2013)

    Article  CAS  Google Scholar 

  3. S. Demirezen et al., Electrical characteristics and photosensing properties of Al/symmetrical CuPc/p-Si photodiodes. J. Mater. Sci.: Mater. Electron. 33(26), 21011–21021 (2022)

    CAS  Google Scholar 

  4. M. Zurnacı et al., Synthesis of a new 1,3,4-thiadiazole-substituted phenanthroimidazole derivative, its growth on glass/ITO as a thin film and analysis of some surface and optoelectronic properties. New J. Chem. 45(48), 22678–22690 (2021)

    Article  Google Scholar 

  5. F. Unal et al., Synthesis and optoelectronic characterization of coronene/CdO self-powered photodiode. J. Mater. Sci.: Mater. Electron. (2022). https://doi.org/10.1007/s10854-022-09237-y

    Article  Google Scholar 

  6. M.S. Kurt et al., Optical and electrical characterization of a ZnO/coronene-based hybrid heterojunction photodiode. J. Electron. Mater. 51, 6846–6857 (2022)

    Article  CAS  ADS  Google Scholar 

  7. S. Aktas et al., Fabrication and morphological, optical, and electrical characterisation of Cu-doped ZnO nanorod/coronene nanowire hybrid heterojunctions. Phys. Scr. (2022). https://doi.org/10.1088/1402-4896/ac9e7c

    Article  Google Scholar 

  8. S. Li et al., A self-powered solar-blind photodetector with large Voc enhancing performance based on the PEDOT:PSS/Ga2O3 organic–inorganic hybrid heterojunction. J. Mater. Chem. C 8(4), 1292–1300 (2020)

    Article  MathSciNet  CAS  Google Scholar 

  9. F.A. Alawainati et al., Nonlinear optical properties of novel metallophthalocyanines. J. Appl. Spectrosc. 88(5), 951–957 (2021)

    Article  CAS  ADS  Google Scholar 

  10. Z. Biyiklioglu et al., Comparative nonlinear optics and optical limiting properties of metallophthalocyanines. Inorg. Chim. Acta 486, 345–351 (2019)

    Article  CAS  Google Scholar 

  11. M. Demirol et al., Synthesis and photodiode properties of chalcone substituted metallo-phthalocyanine. J. Mol. Struct. 1219, 128571 (2020)

    Article  CAS  Google Scholar 

  12. N. Mutz et al., Excited-state charge transfer enabling MoS2/phthalocyanine photodetectors with extended spectral sensitivity. J. Phys. Chem. C 124(5), 2837–2843 (2020)

    Article  CAS  Google Scholar 

  13. T. Paltrinieri et al., Understanding photocapacitive and photofaradaic processes in organic semiconductor photoelectrodes for optobioelectronics. Adv. Func. Mater. 31(16), 2010116 (2021)

    Article  CAS  Google Scholar 

  14. S. Dolai et al., Cupric oxide (CuO) thin films prepared by reactive dc magnetron sputtering technique for photovoltaic application. J. Alloy Compd. 724, 456–464 (2017)

    Article  CAS  Google Scholar 

  15. B.K. Meyer et al., Binary copper oxide semiconductors: From materials towards devices. Phys. Status Solidi B 249(8), 1487–1509 (2012)

    Article  CAS  ADS  Google Scholar 

  16. A.S. Zoolfakar et al., Nanostructured copper oxide semiconductors: a perspective on materials, synthesis methods and applications. J. Mater. Chem. C 2(27), 5247–5270 (2014)

    Article  CAS  Google Scholar 

  17. V.-H. Castrejón-Sánchez et al., Thermal oxidation of copper over a broad temperature range: towards the formation of cupric oxide (CuO). Mater. Res. Express 6(7), 075909 (2019)

    Article  ADS  Google Scholar 

  18. C. Abinaya et al., The effect of post-deposition annealing conditions on structural and thermoelectric properties of sputtered copper oxide films. RSC Adv. 10(49), 29394–29401 (2020)

    Article  CAS  PubMed Central  ADS  PubMed  Google Scholar 

  19. F.A. Akgul et al., Influence of thermal annealing on microstructural, morphological, optical properties and surface electronic structure of copper oxide thin films. Mater. Chem. Phys. 147(3), 987–995 (2014)

    Article  CAS  Google Scholar 

  20. D.S. Murali, A. Subrahmanyam, Synthesis of low resistive p type Cu4O3 thin films by DC reactive magnetron sputtering and conversion of Cu4O3 into CuO by laser irradiation. J. Phys. D 49(37), 375102 (2016)

    Article  Google Scholar 

  21. D. Dwivedi, B. Singh, M. Dubey, Structural and optical investigations of Cd1− xZnxTe thin film. J. Non-Cryst. Solids 356(31–32), 1563–1568 (2010)

    Article  CAS  ADS  Google Scholar 

  22. S. Aktas et al., Investigation of fundamental electrical and optoelectronic properties of an organic- and carbon-based MnPc/GC photodiode with high photosensitivity. Phys. Scr. 98(9), 095504 (2023)

    Article  ADS  Google Scholar 

  23. J. Tauc, Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 3(1), 37–46 (1968)

    Article  CAS  Google Scholar 

  24. V. Bilgin et al., The effect of substrate temperature on the structural and some physical properties of ultrasonically sprayed CdS films. Mater. Chem. Phys. 94(1), 103–108 (2005)

    Article  CAS  Google Scholar 

  25. F. Atay, O. Gultepe, Structural, optical and surface properties of sol–gel-derived boron-doped ZnO films for photocatalytic applications. Appl. Phys. A 128(2), 99 (2022)

    Article  CAS  ADS  Google Scholar 

  26. Ü. Fatih, Comparison of optical properties of Cu- and In-doped CdO thin films having low dielectric loss. J. Mater. Electron. Devices 1(1), 67–72 (2023)

    Google Scholar 

  27. F. Unal, Determination of the basic optical parameters of CdX (X= Se, S) thin films prepared with low concentration precursor solutions. J. Charact. 3(1), 30–36 (2023)

    Google Scholar 

  28. S. Aktas, Investigation and comparison of optical properties of CdO and CdGaO transparent conductive metal oxide thin films. J. Mater. Electron. Devices 1(1), 2–17 (2023)

    Google Scholar 

  29. M. Engin et al., Growth and characterization of Zn-incorporated copper oxide films. J. Electron. Mater. 38(6), 787–796 (2009)

    Article  CAS  ADS  Google Scholar 

  30. M. Engin et al., Growth and characterization of Zn-incorporated copper oxide films. J. Electron. Mater. 38, 787–796 (2009)

    Article  CAS  ADS  Google Scholar 

  31. Ü. Fatih, et al., Electrical properties of InSe/PMItz nanocomposite thin films. J. Mater. Electron. Devices 3(1) (2022)

  32. A. Farag, I. Yahia, Rectification and barrier height inhomogeneous in Rhodamine B based organic Schottky diode. Synth. Met. 161(1–2), 32–39 (2011)

    Article  CAS  Google Scholar 

  33. K. Saron et al., Interface properties determined the performance of thermally grown GaN/Si heterojunction solar cells. Sol. Energy 98, 485–491 (2013)

    Article  CAS  ADS  Google Scholar 

  34. Z. Xu et al., Growth of GaN on Si (111): Surfaces and crystallinity of the epifilms and the transport behavior of GaN/Si heterojunctions. J. Appl. Phys. 110(9), 093514 (2011)

    Article  ADS  Google Scholar 

  35. M.S. Kurt et al., Optical and electrical characterization of a ZnO/coronene-based hybrid heterojunction photodiode. J. Electron. Mater. 51(12), 6846–6857 (2022)

    Article  CAS  ADS  Google Scholar 

  36. S.M. Sze, K.K.N., p-n Junctions, in Physics of Semiconductor Devices (Wiley, New Jersey, 2006, pp. 77–133)

  37. S.K. Cheung, N.W. Cheung, Extraction of Schottky diode parameters from forward current-voltage characteristics. Appl. Phys. Lett. 49(2), 85–87 (1986)

    Article  CAS  ADS  Google Scholar 

  38. H. Çetinkaya et al., Photovoltaic characteristics of Au/PVA (Bi-doped)/n-Si Schottky barrier diodes (SBDs) at various temperatures. Curr. Appl. Phys. 13(6), 1150–1156 (2013)

    Article  ADS  Google Scholar 

  39. S. Tan et al., Electrical characterizations of Au/ZnO/n-GaAs Schottky diodes under distinct illumination intensities. J. Mater. Sci.: Mater. Electron. 27(8), 8340–8347 (2016)

    CAS  Google Scholar 

  40. F. Ünal, Investigation of diode parameters of photoconductive and photovoltaic p-type Si/Ge-doped WOx heterojunction. J. Electron. Mater. 51(11), 6397–6409 (2022)

    Article  ADS  Google Scholar 

  41. S.S. Li, Scattering mechanisms and carrier mobilities in semiconductors, in Semiconductor Physical Electronics. (Springer, 2006), pp.211–245

    Chapter  Google Scholar 

  42. E.H. Rhoderick, Metal-semiconductor contacts. IEE Proc. I 129(1), 1 (1982)

    CAS  Google Scholar 

  43. S. Aktas, Electrical characterisation of photosensitive Si/W–Ge oxide composite heterojunction. Opt. Mater. 132, 112839 (2022)

    Article  CAS  Google Scholar 

  44. F. Unal, M.S. Kurt, S. Durdu, Investigation of the effect of light on the electrical parameters of Si/TiO2 heterojunctions produced by anodic oxidation on p-type Si wafer. J. Mater. Sci.: Mater. Electron. 33(19), 15834–15847 (2022)

    CAS  Google Scholar 

  45. H.E. Lapa et al., Effect of illumination on electrical parameters of Au/(P3DMTFT)/n-GaAs Schottky barrier diodes. Indian J. Phys. 94(12), 1901–1908 (2020)

    Article  CAS  ADS  Google Scholar 

  46. F. Yakuphanoglu, Controlling of silicon–insulator–metal junction by organic semiconductor polymer thin film. Synth. Met. 160(13), 1551–1555 (2010)

    Article  CAS  Google Scholar 

  47. H. Seymen et al., Effect of illumination intensity on the electrical characteristics of Au//SiO2/n-type Si structures with GO and P3C4MT interface layer. J. Mater. Sci.: Mater. Electron. 33(24), 19656–19666 (2022)

    CAS  Google Scholar 

  48. W. Mönch, Barrier heights of real Schottky contacts explained by metal-induced gap states and lateral inhomogeneities. J. Vac. Sci. Technol. B 17(4), 1867–1876 (1999)

    Article  Google Scholar 

  49. K. Akkiliç, M.E. Aydin, A. Türüt, The effect of series resistance on the relationship between barrier heights and ideality factors of inhomogeneous Schottky barrier diodes. Phys. Scr. 70(6), 364 (2004)

    Article  ADS  Google Scholar 

  50. R.F. Schmitsdorf, T.U. Kampen, W. Mönch, Explanation of the linear correlation between barrier heights and ideality factors of real metal-semiconductor contacts by laterally nonuniform Schottky barriers. J. Vac. Sci. Technol. B 15(4), 1221–1226 (1997)

    Article  CAS  Google Scholar 

  51. Ş Altındal, Ö. Sevgili, Y. Azizian-Kalandaragh, A comparison of electrical parameters of Au/n-Si and Au/(CoSO4–PVP)/n-Si structures (SBDs) to determine the effect of (CoSO4–PVP) organic interlayer at room temperature. J. Mater. Sci.: Mater. Electron. 30(10), 9273–9280 (2019)

    Google Scholar 

  52. Fatih, Ü., Investigation Of Some Optical And Electrical Properties Of InSe Thin Film, a Window Layer for Photovoltaic Cell Growth on Glass/GaSe Substrate by M-CBD Method. Karadeniz Fen Bilimleri Dergisi. 11(1): p. 297–306.

  53. B. Gunduz, I.S. Yahia, F. Yakuphanoglu, Electrical and photoconductivity properties of p-Si/P3HT/Al and p-Si/P3HT:MEH-PPV/Al organic devices: Comparison study. Microelectron. Eng. 98, 41–57 (2012)

    Article  CAS  Google Scholar 

  54. E. Yükseltürk et al., Illumination and voltage effects on the forward and reverse bias current–voltage (I-V) characteristics in In/In2S3/p-Si photodiodes. J. Mater. Sci.: Mater. Electron. 32(17), 21825–21836 (2021)

    Google Scholar 

  55. H. Bayhan, M. Bayhan, A simple approach to determine the solar cell diode ideality factor under illumination. Sol. Energy 85(5), 769–775 (2011)

    Article  ADS  Google Scholar 

  56. Ü. Fatih, and S. Aktaş, Işığa Duyarlı n-tipi Katkılı Metal oksit/p-tipi Si Heteroekleminin Elektriksel Karakterizasyonu. J. Inst. Sci. Technol. 12(3), 1506–1517.

  57. M. Saad, A. Kassis, Effect of interface recombination on solar cell parameters. Sol. Energy Mater. Sol. Cells 79(4), 507–517 (2003)

    Article  CAS  Google Scholar 

  58. A. Patel et al., Fabrication, photoresponse and temperature dependence of n-VO2/n-MoSe2 heterojunction diode. Superlattices Microstruct. 130, 160–167 (2019)

    Article  CAS  ADS  Google Scholar 

  59. A. Kocyigit et al., The light detection performance of the congo red dye in a Schottky type photodiode. Chem. Phys. Lett. 800, 139673 (2022)

    Article  CAS  Google Scholar 

  60. B. Gündüz et al., The photo-electrical properties of the p-Si/Fe(II)–polymeric complex/Au diode. Synth. Met. 184, 73–82 (2013)

    Article  Google Scholar 

  61. P. Vivek et al., Fabrication of illumination-dependent Cu/p-Si Schottky barrier diodes by sandwiching MoO3 nanoplates as an interfacial layer via JNSP technique. J. Electron. Mater. 49(7), 4249–4264 (2020)

    Article  CAS  ADS  Google Scholar 

  62. V. Balasubramani et al., Colossal photosensitive boost in Schottky diode behaviour with Ce-V2O5 interfaced layer of MIS structure. Sens. Actuators A 315, 112333 (2020)

    Article  CAS  Google Scholar 

  63. C.A. Canbay, O. Karaduman, The photo response properties of shape memory alloy thin film based photodiode. J. Mol. Struct. 1235, 130263 (2021)

    Article  CAS  Google Scholar 

  64. B. Yuan et al., High photosensitivity and low dark current of photoconductive semiconductor switch based on ZnO single nanobelt. Solid-State Electron. 55(1), 49–53 (2011)

    Article  CAS  ADS  Google Scholar 

  65. W. Luo et al., Room-temperature single-photon detector based on single nanowire. Nano Lett. 18(9), 5439–5445 (2018)

    Article  CAS  ADS  PubMed  Google Scholar 

  66. B. Murali, S.B. Krupanidhi, Transport properties of CuIn1−xAlxSe2/AZnO heterostructure for low cost thin film photovoltaics. Dalton Trans. 43(5), 1974–1983 (2014)

    Article  CAS  PubMed  Google Scholar 

  67. L. Zheng et al., Large scale, highly efficient and self-powered UV photodetectors enabled by all-solid-state n-TiO 2 nanowell/p-NiO mesoporous nanosheet heterojunctions. J. Mater. Chem. C 4(42), 10032–10039 (2016)

    Article  CAS  Google Scholar 

  68. A.Q. Alosabi et al., Characterization and photovoltaic performance analysis of Na2Pc/p-Si heterojunction solar cell. J. Mater. Sci.: Mater. Electron. 33(33), 25329–25341 (2022)

    CAS  Google Scholar 

  69. G.K. Karaoğlan et al., Synthesis, characterization, electrochemical, spectroelectrochemical and dye-sensitized solar cell properties of phthalocyanines containing carboxylic acid anchoring groups as photosensitizer. Dyes Pigm. 204, 110390 (2022)

    Article  Google Scholar 

  70. T. Arslan, Design, synthesis of novel peripherally tetra-chalcone substituted phthalocyanines and their inhibitory effects on acetylcholinesterase and carbonic anhydrases (hCA I and II). J. Organomet. Chem. 951, 122021 (2021)

    Article  CAS  Google Scholar 

Download references

Funding

There is no funding for this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. FU: drafting, coating of organic thin films and generation of heterojunctions, electrical analysis, conceptualisation, formal analysis and writing. SA: writing, editing, design and optical analysis. MSK: production of CuOx thin film, writing and editing. MMK: IV measurement, writing and editing. TA: synthesis of organic compound and writing. BC: IV measurement and writing. MG: SEM and EDX measurement and writing. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Fatih Unal or Sitki Aktas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Unal, F., Aktas, S., Kurt, M.S. et al. Investigation of photodetector and photovoltaic properties of H2Pc/CuO and H2Pc/ITO junctions produced with modified H2Pc. Journal of Materials Research 39, 675–688 (2024). https://doi.org/10.1557/s43578-023-01258-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01258-5

Keywords

Navigation