Skip to main content
Log in

An injectable persistent luminescence hydrogel for repeated photodynamic therapy of hypoxic tumors

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Photodynamic therapy (PDT) holds great promise for treating cancer and other diseases, but its efficacy is hindered by prolonged light irradiation and tumor hypoxia. Here, we present an injectable persistent luminescent hydrogel, which consists of gelatin methacrylate and zinc gallate (ZGC) nanoparticles. A photosensitive agent, zinc phthalocyanine (ZnPc), and a hypoxia-activated prodrug, tirapazamine (TPZ), are incorporated into the hydrogel to fabricate a LED-excitable PDT nanoplatform. The persistent luminescence of ZGC nanoparticles efficiently activates ZnPc photosensitizers to generate cytotoxic reactive oxygen species (ROS) after the cessation of LED light, reducing the need for continuous irradiation. Meanwhile, TPZ decomposes in the presence of low oxygen during PDT, producing additional toxic radicals to combat tumor hypoxia. Furthermore, the gelatin methacrylate bioink enhances the retention of these functional nanoagents at the tumor site, allowing for repeated PDT treatments. This work demonstrates the potential of injectable and rechargeable persistent hydrogels for efficient PDT treatments.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data availability

All the experimental data herein presented are available on request from the corresponding author.

References

  1. T. Pham, V. Nguyen, Y. Choi, S. Lee, J. Yoon, Chem. Rev. 121, 13454–13619 (2021)

    CAS  PubMed  Google Scholar 

  2. J. Correia, J. Rodrigues, S. Pimenta, T. Dong, Z. Yang, Pharmaceutics 13, 1332 (2021)

    CAS  PubMed Central  PubMed  Google Scholar 

  3. J. Xie, Y. Wang, W. Choi, P. Jangili, Y. Ge, Y. Xu, J. Kang, L. Liu, B. Zhang, Z.J. Xie, J. He, N. Xie, G. Nie, H. Zhang, J.S. Kim, Chem. Soc. Rev. 50, 9152–9201 (2021)

    CAS  PubMed  Google Scholar 

  4. X. Li, J. Lovell, J. Yoon, X. Chen, Nat. Rev. Clin. Oncol. 17, 657–674 (2020)

    PubMed  Google Scholar 

  5. Y. Wan, L. Fu, C. Li, J. Lin, P. Huang, Adv. Mater. 33, 2103978 (2021)

    CAS  Google Scholar 

  6. G. Gunaydin, M. Gedik, S. Ayan, Front. Chem. 9, 691697 (2021)

    CAS  PubMed Central  PubMed  Google Scholar 

  7. T. Lécuyer, E. Teston, G. Ramirez-Garcia, T. Maldiney, B. Viana, J. Seguin, N. Mignet, D. Scherman, C. Richard, Theranostics 6, 2488–2524 (2016)

    PubMed Central  PubMed  Google Scholar 

  8. L. Yang, S. Gai, H. Ding, D. Yang, L. Feng, P. Yang, Adv. Opt. Mater. 11, 2202382 (2023)

    CAS  Google Scholar 

  9. S. Sharma, J. James, S. Gupta, S. Hussain, Materials 16, 236 (2023)

    CAS  Google Scholar 

  10. J. Liu, T. Lécuyer, J. Seguin, N. Mignet, D. Scherman, B. Viana, C. Richard, Adv. Drug. Deliver. Rev. 138, 193–210 (2019)

    Google Scholar 

  11. H. Tan, T. Wang, Y. Shao, C. Yu, L. Hu, Front. Chem. 7, 387 (2019)

    ADS  CAS  PubMed Central  PubMed  Google Scholar 

  12. D. Fritzen, L. Giordano, L. Rodrigues, J. Monteiro, Nanomaterials 10, 2015 (2020)

    Google Scholar 

  13. X. Sun, L. Song, N. Liu, J. Shi, Y. Zhang, ACS Appl. Nano Mater. 4, 6497–6514 (2021)

    CAS  Google Scholar 

  14. X. Wei, S. Kershaw, X. Huang, M. Jiao, C. Beh, C. Liu, M. Sarmadi, A. Rogach, L. Jing, J. Phys. Chem. Lett. 12, 7067–7075 (2021)

    CAS  PubMed  Google Scholar 

  15. X. Wei, X. Huang, Y. Zeng, L. Jing, W. Tang, X. Li, H. Ning, X. Sun, Y. Yi, M. Gao, ACS Nano 14, 12113–12124 (2020)

    CAS  PubMed  Google Scholar 

  16. M. Rudolf, G. Bortel, B. Markus, N. Jegenyes, V. Verkhovlyuk, K. Kamarás, F. Simon, A. Gali, D. Beke, ACS Appl. Nano Mater. 5, 8950–8961 (2022)

    CAS  Google Scholar 

  17. L. Li, Y. Wang, H. Li, H. Huang, H. Zhao, Opt. Mater. 5, 57193–57200 (2015)

    CAS  Google Scholar 

  18. S. Sun, H. Wang, X. Yan, Acc. Chem. Res. 51, 1131–1143 (2018)

    CAS  Google Scholar 

  19. G. Liu, S. Zhang, Y. Shi, X. Huang, Y. Tang, P. Chen, W. Si, W. Huang, X. Dong, Adv. Funct. Mater. 28, 1804317 (2018)

    Google Scholar 

  20. R. Abdurahman, C. Yang, X. Yan, Chem. Commun. 52, 13303–13306 (2016)

    CAS  Google Scholar 

  21. Q. Wang, N. Liu, Z. Hou, J. Shi, X. Su, X. Sun, Adv. Healthc. Mater. 10, 2000802 (2021)

    CAS  Google Scholar 

  22. T. Maldiney, B.T. Doan, D. Alloyeau, M. Bessodes, D. Scherman, C. Richard, Adv. Funct. Mater. 25, 331–338 (2015)

    CAS  Google Scholar 

  23. T. Maldiney, D. Gourier, C. Richard, ACS Symp, Ser. Am. Chem. Soc. 1113, 1–25 (2012)

    CAS  Google Scholar 

  24. L. Zang, H. Zhao, X. Ji, W. Cao, Z. Zhang, P. Meng, Photochem. Photobiol. Sci. 16, 1088–1094 (2017)

    CAS  Google Scholar 

  25. X. Song, L. Feng, C. Liang, K. Yang, Z. Liu, Nano Lett. 16, 6145–6153 (2016)

    ADS  CAS  PubMed  Google Scholar 

  26. X. Liang, M. Chen, P. Bhattarai, S. Hameed, Z. Dai, ACS Nano 14, 13569–13583 (2020)

    CAS  PubMed  Google Scholar 

  27. X. Zhu, J. Zhang, J. Liu, Y. Zhang, Adv. Sci. 6, 1901358 (2019)

    CAS  Google Scholar 

  28. K. Yue, G. Santiago, M. Alvarez, A. Tamayol, N. Annabi, A. Khademhosseini, Biomaterials 73, 254–271 (2015)

    CAS  PubMed Central  PubMed  Google Scholar 

  29. M. Yang, L. Xing, W. Gao, Y. Gu, Chinese J. Lasers 44, 0307001 (2017)

    Google Scholar 

  30. R. Ogbodu, B. Nitzsche, A. Ma, D. Atilla, A. Gürek, M. Höpfner, J. Photochem. Photobiol. B Biol 208, 111915 (2020)

    CAS  Google Scholar 

  31. M. Doustvandi, F. Mohammadnejad, B. Mansoori, H. Tajalli, A. Mohammadi, A. Mokhtarzadeh, E. Baghbani, V. Khaze, K. Hajiasgharzadeh, M. Moghaddam, M. Hamblin, B. Baradaran, Photodiagnosis Photodyn. Ther. 28, 88–97 (2019)

    CAS  PubMed  Google Scholar 

  32. Y. Wang, Y. Xie, J. Li, Z. Peng, Y. Sheinin, J. Zhou, D. Oupický, ACS Nano 11, 2227–2238 (2017)

    CAS  PubMed Central  PubMed  Google Scholar 

  33. X. Sun, J. Sun, J. Lv, B. Dong, M. Liu, J. Liu, L. Sun, G. Zhang, L. Zhang, G. Huang, W. Xu, L.Xu, X. Bai, H. Song, J. Mater, Chem. B 7, 5797–5807 (2019)

    CAS  Google Scholar 

  34. D. Lee, S. Jang, S. Kwon, Y. Lee, E. Park, H. Koo, ACS Appl. Mater. Interfaces 13, 10812–10821 (2021)

    CAS  Google Scholar 

  35. M. Silva, J. Carvalho, M. Abreu Fantini, L. Chiavacci, C. Bourgaux, ACS Appl. Nano Mater. 2, 6918–6927 (2019)

    Google Scholar 

  36. J. Yang, Y. Liu, D. Yan, H. Zhu, C. Liu, C. Xu, L. Ma, X. Wang, Dalton T 45, 1364–1372 (2016)

    CAS  Google Scholar 

  37. C. Li, X. Zheng, W. Chen, S. Ji, Y. Yuan, X. Jiang, Nano Lett. 20, 6526–6534 (2020)

    ADS  CAS  PubMed  Google Scholar 

  38. C. Shi, M. Li, Z. Zhang, Q. Yao, K. Shao, F. Xu, N. Xu, H. Li, J. Fan, W. Sun, J. Du, S. Long, J. Wang, X. Peng, Biomaterials 233, 119755 (2020)

    CAS  Google Scholar 

  39. C. Liu, T. Wu, C. Liu, K. Chen, Y. Chen, G. Chen, S. Lin, Small 13, 1700278 (2017)

    Google Scholar 

  40. W. Liu, T. Liu, M. Zou, W. Yu, C. Li, Z. He, M. Zhang, M. Liu, Z. Li, J. Feng, X. Zhang, Adv. Mater. 30, 1802006 (2018)

    Google Scholar 

  41. M. Gao, C. Liang, X. Song, Q. Chen, Q. Jin, C. Wang, Z. Liu, Adv. Mater. 29, 1701429 (2017)

    Google Scholar 

  42. S. Okuyama, T. Nagaya, F. Ogata, Y. Maruoka, K. Sato, Y. Nakamura, P.L. Choyke, H. Kobayashi, Oncotarget 8, 113194–113201 (2017)

    PubMed Central  PubMed  Google Scholar 

  43. R. Wang, X. Wang, X. Mu, W. Feng, Y. Lu, W. Yu, X. Zhou, Acta Biomater. 148, 142–151 (2022)

    CAS  Google Scholar 

Download references

Funding

The authors acknowledge the financial support from the National Natural Science Foundation of China (No. 12275169, 11905123, 31671011, and 81971740), Shanghai Sailing Program (19YF1415200), and Innovative Research Team of High-Level Local Universities in Shanghai.

Author information

Authors and Affiliations

Authors

Contributions

JW and XZ designed and supervised this study. HC and HZ performed the experiments, acquired data, and wrote the original manuscript. JW contributed to visualization and validation of experimental results. JW and XZ wrote, reviewed, and edited manuscript.

Corresponding authors

Correspondence to Jing Wang or Xiaohui Zhu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Zhang, H., Wang, J. et al. An injectable persistent luminescence hydrogel for repeated photodynamic therapy of hypoxic tumors. Journal of Materials Research 39, 636–648 (2024). https://doi.org/10.1557/s43578-023-01256-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01256-7

Navigation