Skip to main content

Advertisement

Log in

Electrospun dimethyloxallylglycine sustained release scaffold for promoting the migration and multidirectional differentiation of stem cells from the apical papilla

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Dental pulpitis, a common dental disease, poses a significant challenge for modern dentistry because of the intricate framework and limited regenerative capacity of dental pulp. Traditional pulp revascularization techniques have limitations in tissue regeneration and control over the type of regenerated tissue. The objective of this investigation is to investigate the capability of an innovative nanofiber tissue engineering scaffold for the regeneration of dental pulp, thereby delving into its latent possibilities. The scaffold, composed of polylactic acid-glycolic acid copolymer (PLGA) and dimethyloxalylglycine-Mesoporous silica nanoparticles (DMOG@MSNs), was fabricated using electrospinning technology. The DMOG@MSNs-PLGA scaffold exhibited good hydrophilicity, biocompatibility, and prolonged liberation of DMOG. In vitro assays demonstrated the scaffold promoted the proliferation, migration, and multidirectional differentiation of stem cells from apical papilla. The results indicate that DMOG@MSNs-PLGA scaffold holds promise for dental pulp regeneration, offering a potential strategy for regenerative endodontic therapy.

Trial registration number: JNSKQYY-2022-001, date of registration: March 9, 2022.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. N. Raslan, W.-E. Wetzel, Exposed human pulp caused by trauma and/or caries in primary dentition: a histological evaluation. Dent. Traumatol.Traumatol. 22(3), 145 (2006). https://doi.org/10.1111/j.1600-9657.2006.00410.x

    Article  Google Scholar 

  2. L. Hu, Y. Liu, S. Wang, Stem cell-based tooth and periodontal regeneration. Oral Dis. 24(5), 696 (2018). https://doi.org/10.1111/odi.12703

    Article  CAS  PubMed  Google Scholar 

  3. G.T.-J. Huang, F. Garcia-Godoy, Missing concepts in De Novo pulp regeneration. J. Dent. Res. 93(8), 717 (2014). https://doi.org/10.1177/0022034514537829

    Article  PubMed Central  PubMed  Google Scholar 

  4. G. Schmalz, M. Widbiller, K.M. Galler, Clinical perspectives of pulp regeneration. J. Endod.Endod. 46(9S), S161 (2020). https://doi.org/10.1016/j.joen.2020.06.037

    Article  Google Scholar 

  5. Y. Wei, P. Lyu, R. Bi, X. Chen, Y. Yu, Z. Li, Y. Fan, Neural regeneration in regenerative endodontic treatment: an overview and current trends. Int. J. Mol. Sci. 23(24), 15492 (2022). https://doi.org/10.3390/ijms232415492

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. D. Ricucci, S. Loghin, J.F. Siqueira, Correlation between clinical and histologic pulp diagnoses. J. Endod.Endod. 40(12), 1932 (2014). https://doi.org/10.1016/j.joen.2014.08.010

    Article  Google Scholar 

  7. Z.C. Cehreli, G.E. Unverdi, E. Ballikaya, Deciduous tooth pulp autotransplantation for the regenerative endodontic treatment of permanent teeth with pulp necrosis: a case series. J. Endod.Endod. 48(5), 669 (2022). https://doi.org/10.1016/j.joen.2022.01.015

    Article  Google Scholar 

  8. G.T.-J. Huang, S. Gronthos, S. Shi, Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J. Dent. Res. 88(9), 792 (2009). https://doi.org/10.1177/0022034509340867

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Y. Li, Y. Lu, I. Maciejewska, K.M. Galler, A. Cavender, R.N. D’Souza, TWIST1 promotes the odontoblast-like differentiation of dental stem cells. Adv. Dent. Res. (2011). https://doi.org/10.1177/0022034511405387

    Article  PubMed Central  PubMed  Google Scholar 

  10. J. Yu, H. He, C. Tang, G. Zhang, Y. Li, R. Wang, J. Shi, Y. Jin, Differentiation potential of STRO-1+ dental pulp stem cells changes during cell passaging. BMC Cell Biol. 11, 32 (2010). https://doi.org/10.1186/1471-2121-11-32

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. D.B. Sequeira, A.R. Oliveira, C.M. Seabra, P.J. Palma, C. Ramos, M.H. Figueiredo, A.C. Santos, A.L. Cardoso, J. Peça, J.M. Santos, Regeneration of pulp-dentin complex using human stem cells of the apical papilla: in vivo interaction with two bioactive materials. Clin. Oral Investig.. Oral Investig. 25(9), 5317 (2021). https://doi.org/10.1007/s00784-021-03840-9

    Article  Google Scholar 

  12. J. Xie, X. Li, Y. Xia, Putting electrospun nanofibers to work for biomedical research. Macromol. Rapid Commun.. Rapid Commun. 29(22), 1775 (2008). https://doi.org/10.1002/marc.200800381

    Article  CAS  Google Scholar 

  13. X. Lu, C. Wang, Y. Wei, One-dimensional composite nanomaterials: synthesis by electrospinning and their applications. Small 5(21), 2349 (2009). https://doi.org/10.1002/smll.200900445

    Article  ADS  CAS  PubMed  Google Scholar 

  14. W. Liu, S. Thomopoulos, Y. Xia, Electrospun nanofibers for regenerative medicine. Adv Healthc Mater 1(1), 10 (2012). https://doi.org/10.1002/adhm.201100021

    Article  CAS  PubMed  Google Scholar 

  15. X. Wang, B. Ding, B. Li, Biomimetic electrospun nanofibrous structures for tissue engineering. Mater Today (Kidlington) 16(6), 229 (2013). https://doi.org/10.1016/j.mattod.2013.06.005

    Article  CAS  PubMed  Google Scholar 

  16. S. Thakkar, M. Misra, Electrospun polymeric nanofibers: new horizons in drug delivery. Eur. J. Pharm. Sci. 107, 148 (2017). https://doi.org/10.1016/j.ejps.2017.07.001

    Article  CAS  PubMed  Google Scholar 

  17. L. Zhang, Y. Yu, K.-C. Feng, Y.-C. Chuang, X. Zuo, Y. Zhou, C.-C. Chang, M. Simon, M. Rafailovich, Templated dentin formation by dental pulp stem cells on banded collagen bundles nucleated on electrospun poly (4-vinyl pyridine) fibers in vitro. Acta Biomater. Biomater. 76, 80 (2018). https://doi.org/10.1016/j.actbio.2018.06.028

    Article  CAS  Google Scholar 

  18. M.T.P. Albuquerque, M.C. Valera, M. Nakashima, J.E. Nör, M.C. Bottino, Tissue-engineering-based strategies for regenerative endodontics. J. Dent. Res. 93(12), 1222 (2014). https://doi.org/10.1177/0022034514549809

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. G. Chen, J. Chen, B. Yang, L. Li, X. Luo, X. Zhang, L. Feng, Z. Jiang, M. Yu, W. Guo, W. Tian, Combination of aligned PLGA/Gelatin electrospun sheets, native dental pulp extracellular matrix and treated dentin matrix as substrates for tooth root regeneration. Biomaterials 52, 56 (2015). https://doi.org/10.1016/j.biomaterials.2015.02.011

    Article  CAS  PubMed  Google Scholar 

  20. S.U. Rahman, S. Ponnusamy, M. Nagrath, P.R. Arany, Precision-engineered niche for directed differentiation of MSCs to lineage-restricted mineralized tissues. J. Tissue Eng. 13, 20417314211073936 (2022). https://doi.org/10.1177/20417314211073934

    Article  CAS  Google Scholar 

  21. S. Türkkan, A.E. Pazarçeviren, D. Keskin, N.E. Machin, Ö. Duygulu, A. Tezcaner, Nanosized CaP-silk fibroin-PCL-PEG-PCL/PCL based bilayer membranes for guided bone regeneration. Mater. Sci. Eng. C 80, 484 (2017). https://doi.org/10.1016/j.msec.2017.06.016

    Article  CAS  Google Scholar 

  22. E.A. Münchow, M.T.P. Albuquerque, B. Zero, K. Kamocki, E. Piva, R.L. Gregory, M.C. Bottino, Development and characterization of novel ZnO-loaded electrospun membranes for periodontal regeneration. Dent. Mater. 31(9), 1038 (2015). https://doi.org/10.1016/j.dental.2015.06.004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. M.C. Bottino, K. Kamocki, G.H. Yassen, J.A. Platt, M.M. Vail, Y. Ehrlich, K.J. Spolnik, R.L. Gregory, Bioactive nanofibrous scaffolds for regenerative endodontics. J. Dent. Res. 92(11), 963 (2013). https://doi.org/10.1177/0022034513505770

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. G. Zanatta, M. Rudisile, M. Camassola, J. Wendorff, N. Nardi, C. Gottfried, P. Pranke, C.A. Netto, Mesenchymal stem cell adherence on poly(D, L-lactide-co-glycolide) nanofibers scaffold is integrin-beta 1 receptor dependent. J. Biomed. Nanotechnol.Nanotechnol. 8(2), 211 (2012). https://doi.org/10.1166/jbn.2012.1382

    Article  CAS  Google Scholar 

  25. S. Jin, X. Xia, J. Huang, C. Yuan, Y. Zuo, Y. Li, J. Li, Recent advances in PLGA-based biomaterials for bone tissue regeneration. Acta Biomater. Biomater. 127, 56 (2021). https://doi.org/10.1016/j.actbio.2021.03.067

    Article  CAS  Google Scholar 

  26. M.J. Strowitzki, A.S. Ritter, G. Kimmer, M. Schneider, Hypoxia-adaptive pathways: a pharmacological target in fibrotic disease? Pharmacol. Res.. Res. 147, 104364 (2019). https://doi.org/10.1016/j.phrs.2019.104364

    Article  CAS  Google Scholar 

  27. M.H.G. Costa, J. Serra, T.C. McDevitt, J.M.S. Cabral, C.L. da Silva, F.C. Ferreira, Dimethyloxalylglycine, a small molecule, synergistically increases the homing and angiogenic properties of human mesenchymal stromal cells when cultured as 3D spheroids. Biotechnol. J.. J. 16(5), e2000389 (2021). https://doi.org/10.1002/biot.202000389

    Article  CAS  Google Scholar 

  28. F. Liu, X. Huang, Z. Luo, J. He, F. Haider, C. Song, L. Peng, T. Chen, B. Wu, Hypoxia-activated PI3K/Akt inhibits oxidative stress via the regulation of reactive oxygen species in human dental pulp cells. Oxid. Med. Cell. Longev.. Med. Cell. Longev. 2019, 6595189 (2019). https://doi.org/10.1155/2019/6595189

    Article  CAS  Google Scholar 

  29. J. Zhou, C. Sun, SENP1/HIF-1α axis works in angiogenesis of human dental pulp stem cells. J. Biochem. Mol. Toxicol.Biochem. Mol. Toxicol. 34(3), e22436 (2020). https://doi.org/10.1002/jbt.22436

    Article  CAS  Google Scholar 

  30. E. Shimizu, G. Jong, N. Partridge, P.A. Rosenberg, L.M. Lin, Histologic observation of a human immature permanent tooth with irreversible pulpitis after revascularization/regeneration procedure. J. Endod.Endod. 38(9), 1293 (2012). https://doi.org/10.1016/j.joen.2012.06.017

    Article  Google Scholar 

  31. B.D. Smaila, S.D. Holland, F. Babaeijandaghi, H.G. Henderson, F.M.V. Rossi, M.S. Ramer, Systemic hypoxia mimicry enhances axonal regeneration and functional recovery following peripheral nerve injury. Exp. Neurol. 334, 113436 (2020). https://doi.org/10.1016/j.expneurol.2020.113436

    Article  CAS  PubMed  Google Scholar 

  32. Y. Li, W. Han, Y. Wu, K. Zhou, Z. Zheng, H. Wang, L. Xie, R. Li, K. Xu, Y. Liu, X. Wang, J. Xiao, Stabilization of hypoxia inducible factor-1α by dimethyloxalylglycine promotes recovery from acute spinal cord injury by inhibiting neural apoptosis and enhancing axon regeneration. J. NeurotraumaNeurotrauma 36(24), 3394 (2019). https://doi.org/10.1089/neu.2018.6364

    Article  Google Scholar 

  33. S. Zippusch, K.F.W. Besecke, F. Helms, M. Klingenberg, A. Lyons, P. Behrens, A. Haverich, M. Wilhelmi, N. Ehlert, U. Böer, Chemically induced hypoxia by dimethyloxalylglycine (DMOG)-loaded nanoporous silica nanoparticles supports endothelial tube formation by sustained VEGF release from adipose tissue-derived stem cells. Regen. Biomater. 8(5), rbab039 (2021). https://doi.org/10.1093/rb/rbab039

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Y. Zhu, F. Song, Y. Ju, L. Huang, L. Zhang, C. Tang, H. Yang, C. Huang, NAC-loaded electrospun scaffolding system with dual compartments for the osteogenesis of rBMSCs in vitro. Int. J. Nanomed.Nanomed. 14, 787 (2019). https://doi.org/10.2147/IJN.S183233

    Article  CAS  Google Scholar 

  35. Z.-Q. Liu, L.-L. Shang, S.-H. Ge, Immunomodulatory effect of dimethyloxallyl glycine/nanosilicates-loaded fibrous structure on periodontal bone remodeling. J. Dent. Sci. 16(3), 937 (2021). https://doi.org/10.1016/j.jds.2020.10.008

    Article  PubMed  Google Scholar 

  36. X. Ren, Y. Han, J. Wang, Y. Jiang, Z. Yi, H. Xu, Q. Ke, An aligned porous electrospun fibrous membrane with controlled drug delivery—an efficient strategy to accelerate diabetic wound healing with improved angiogenesis. Acta Biomater. Biomater. 70, 140 (2018). https://doi.org/10.1016/j.actbio.2018.02.010

    Article  CAS  Google Scholar 

  37. L. Shang, Z. Liu, B. Ma, J. Shao, B. Wang, C. Ma, S. Ge, Dimethyloxallyl glycine/nanosilicates-loaded osteogenic/angiogenic difunctional fibrous structure for functional periodontal tissue regeneration. Bioact. Mater. 6(4), 1175 (2021). https://doi.org/10.1016/j.bioactmat.2020.10.010

    Article  CAS  PubMed  Google Scholar 

  38. P.M. Amarasinghe, K.S. Katti, D.R. Katti, Nature of organic fluid—montmorillonite interactions: an FTIR spectroscopic study. J. Colloid Interface Sci. 337(1), 97 (2009). https://doi.org/10.1016/j.jcis.2009.05.011

    Article  ADS  CAS  PubMed  Google Scholar 

  39. X. Ji, H. Shao, X. Li, M.W. Ullah, G. Luo, Z. Xu, L. Ma, X. He, Z. Lei, Q. Li, X. Jiang, G. Yang, Y. Zhang, Injectable immunomodulation-based porous chitosan microspheres/HPCH hydrogel composites as a controlled drug delivery system for osteochondral regeneration. Biomaterials 285, 121530 (2022). https://doi.org/10.1016/j.biomaterials.2022.121530

    Article  CAS  PubMed  Google Scholar 

  40. L. He, J. Zhou, M. Chen, C.-S. Lin, S.G. Kim, Y. Zhou, L. Xiang, M. Xie, H. Bai, H. Yao, C. Shi, P.G. Coelho, T.G. Bromage, B. Hu, N. Tovar, L. Witek, J. Wu, K. Chen, W. Gu, J. Zheng, T.-J. Sheu, J. Zhong, J. Wen, Y. Niu, B. Cheng, Q. Gong, D.M. Owens, M. Stanislauskas, J. Pei, G. Chotkowski, S. Wang, G. Yang, D.J. Zegarelli, X. Shi, M. Finkel, W. Zhang, J. Li, J. Cheng, D.P. Tarnow, X. Zhou, Z. Wang, X. Jiang, A. Romanov, D.W. Rowe, S. Wang, L. Ye, J. Ling, J. Mao, Parenchymal and stromal tissue regeneration of tooth organ by pivotal signals reinstated in decellularized matrix. Nat. Mater. 18(6), 627 (2019). https://doi.org/10.1038/s41563-019-0368-6

    Article  ADS  CAS  PubMed Central  PubMed  Google Scholar 

  41. S.N. Kaushik, B. Kim, A.M.C. Walma, S.C. Choi, H. Wu, J.J. Mao, H.-W. Jun, K. Cheon, Biomimetic microenvironments for regenerative endodontics. Biomater. Res. 20, 14 (2016). https://doi.org/10.1186/s40824-016-0061-7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. E. Shimizu, D. Ricucci, J. Albert, A.S. Alobaid, J.L. Gibbs, G.T.-J. Huang, L.M. Lin, Clinical, radiographic, and histological observation of a human immature permanent tooth with chronic apical abscess after revitalization treatment. J. Endod.Endod. 39(8), 1078 (2013). https://doi.org/10.1016/j.joen.2013.04.032

    Article  Google Scholar 

  43. A. Nosrat, A. Kolahdouzan, F. Hosseini, E.A. Mehrizi, P. Verma, M. Torabinejad, Histologic outcomes of uninfected human immature teeth treated with regenerative endodontics: 2 case reports. J. Endod.Endod. 41(10), 1725 (2015). https://doi.org/10.1016/j.joen.2015.05.004

    Article  Google Scholar 

  44. M. Song, Y. Cao, S.-J. Shin, W.-J. Shon, N. Chugal, R.H. Kim, E. Kim, M.K. Kang, Revascularization-associated intracanal calcification: assessment of prevalence and contributing factors. J. Endod.Endod. 43(12), 2025 (2017). https://doi.org/10.1016/j.joen.2017.06.018

    Article  Google Scholar 

  45. H. Chu, Y. Zhang, F. Wang, T. Feng, L. Wang, D. Wang, Effect of graphene oxide on mechanical properties and durability of ultra-high-performance concrete prepared from recycled sand. Nanomaterials (Basel) 10(9), 1718 (2020). https://doi.org/10.3390/nano10091718

    Article  CAS  PubMed  Google Scholar 

  46. N. Baishya, M. Mamouei, K. Budidha, M. Qassem, P. Vadgama, P.A. Kyriacou, Investigations into the effects of pH on quantitative measurements of lactate in biological media using ATR-FTIR spectroscopy. Molecules 25(16), 3695 (2020). https://doi.org/10.3390/molecules25163695

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. H. Wang, H. Yu, T.N. Tran, K. Fu, K. Kiley, S. Kullar, J. Hu, M. Kamberi, Chemical characterization of leachables in catheter device. ACS Omega 7(51), 48291 (2022). https://doi.org/10.1021/acsomega.2c06473

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. M. Ziąbka, E. Menaszek, J. Tarasiuk, S. Wroński, Biocompatible nanocomposite implant with silver nanoparticles for otology-in vivo evaluation. Nanomaterials (Basel) 8(10), 764 (2018). https://doi.org/10.3390/nano8100764

    Article  CAS  PubMed  Google Scholar 

  49. H. Song, Y. Zhang, Z. Zhang, S. Xiong, X. Ma, Y. Li, Hydroxyapatite/NELL-1 nanoparticles electrospun fibers for osteoinduction in bone tissue engineering application. Int. J. Nanomed.Nanomed. 16, 4321 (2021). https://doi.org/10.2147/IJN.S309567

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Peng Yan (College of Basic Medical Sciences, Binzhou Medical University) for providing an electrospinning machine.

Funding

This work was supported by the “Clinical + X” scientific and technological innovation project of Binzhou Medical University (BY2021LCX08); Natural Science Foundation of Shandong Province (ZR2019BH040); Ji Nan Science & Technology Bureau (202134005); Research Assistance Fund for the President of Ji Nan Stomatological Hospital.

Author information

Authors and Affiliations

Authors

Contributions

CL: methodology, formal analysis, writing-original draft. LL: investigation, formal analysis. AL: guidance of experimental techniques. XY: disinfection of experimental materials. SW: data curation. SX: data curation. XY: assistance of project administration, co-supervision, funding acquisition. LZ: funding acquisition, project administration, review & editing. YD: conceptualization, funding acquisition, project administration.

Corresponding authors

Correspondence to Xijiao Yu, Li Zhang or Yi Du.

Ethics declarations

Conflict of interest

The authors declare that they have no known conflicts of interest/competing interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This study was performed in line with the principles of the Declaration of Helsinki. Ethics approval was obtained from Jinan Stomatological Hospital for this study (Date of registration: March 9, 2022. Ethics approval number: JNSKQYY-2022-001).

Consent for publication

All authors agree to participate and agree to publish.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Luan, L., Lyu, A. et al. Electrospun dimethyloxallylglycine sustained release scaffold for promoting the migration and multidirectional differentiation of stem cells from the apical papilla. Journal of Materials Research 39, 609–625 (2024). https://doi.org/10.1557/s43578-023-01253-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01253-w

Keywords

Navigation