Skip to main content
Log in

On the optical tuning of the threshold voltage for DPPDTT-based organic field effect transistors

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Understanding the threshold voltage tuning in photosensitive organic field effect transistors (OFETs) is crucial for many device applications like depletion-load unipolar inverters for logic circuits. Here, we report on the correlation between the illumination conditions and threshold voltage tuning in a bottom gate top contact OFET based on photoresponsive organic polymer Poly[2,5-(2-octyldodecyl)-3,6-diketopyrrolopyrrole-alt-5,5-(2,5-di(thien-2-yl)thieno [3,2-b]thiophene)], (DPPDTT). The shift in the threshold voltage as a function of illumination intensity and time shows an exponential decay where it finally saturates. The shift in threshold voltage is attributed to the trapped electrons at the dielectric/semiconductor interface that dissociates from the photogenerated excitons. An average positive shift of about 20 V was observed after successive illuminations for various times and intensities. The overall charge carrier mobility of the device remained constant before and after illumination, with average saturation mobility of 0.01cm2/V.sec.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. S. Sato, S. Ohisa, Y. Hayashi, R. Sato, D. Yokoyama, T. Kato, M. Suzuki, T. Chiba, Y.-J. Pu, J. Kido, Organic light-emitting devices: air-stable and high-performance solution-processed organic light-emitting devices based on hydrophobic polymeric ionic liquid carrier-injection layers (Adv. Mater. 18/2018). Adv. Mater. 30, 1870127 (2018). https://doi.org/10.1002/adma.201870127

    Article  CAS  Google Scholar 

  2. O. Knopfmacher, M.L. Hammock, A.L. Appleton, G. Schwartz, J. Mei, T. Lei, J. Pei, Z. Bao, Highly stable organic polymer field-effect transistor sensor for selective detection in the marine environment. Nat. Commun. 5, 2954 (2014). https://doi.org/10.1038/ncomms3954

    Article  ADS  CAS  PubMed  Google Scholar 

  3. S.E. Root, S. Savagatrup, A.D. Printz, D. Rodriquez, D.J. Lipomi, Mechanical properties of organic semiconductors for stretchable, highly flexible, and mechanically robust electronics. Chem. Rev. 117, 6467–6499 (2017). https://doi.org/10.1021/acs.chemrev.7b00003

    Article  CAS  PubMed  Google Scholar 

  4. M. Kaltenbrunner, M.S. White, E.D. Głowacki, T. Sekitani, T. Someya, N.S. Sariciftci, S. Bauer, Ultrathin and lightweight organic solar cells with high flexibility. Nat. Commun. (2012). https://doi.org/10.1038/ncomms1772

    Article  PubMed  Google Scholar 

  5. P.E. Burrows, G. Gu, V. Bulovic, Z. Shen, S.R. Forrest, M.E. Thompson, Achieving full-color organic light-emitting devices for lightweight, flat-panel displays. IEEE Trans. Electron Devices 44, 1188–1203 (1997). https://doi.org/10.1109/16.605453

    Article  ADS  CAS  Google Scholar 

  6. S. Allard, M. Forster, B. Souharce, H. Thiem, U. Scherf, Organic semiconductors for solution-processable field-effect transistors (OFETs). Angew. Chem. Int. Ed. 47, 4070–4098 (2008). https://doi.org/10.1002/anie.200701920

    Article  CAS  Google Scholar 

  7. S.-M. Lee, J.H. Kwon, S. Kwon, K.C. Choi, A review of flexible OLEDs toward highly durable unusual displays. IEEE Trans. Electron Devices 64, 1922–1931 (2017). https://doi.org/10.1109/TED.2017.2647964

    Article  ADS  CAS  Google Scholar 

  8. L. Spinelle, M. Gerboles, G. Kok, S. Persijn, T. Sauerwald, Review of portable and low-cost sensors for the ambient air monitoring of benzene and other volatile organic compounds. Sensors 17, 1520 (2017). https://doi.org/10.3390/s17071520

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. B. Kumar, B.K. Kaushik, Y.S. Negi, Organic thin film transistors: structures, models, materials, fabrication, and applications: a review. Polym. Rev. 54, 33–111 (2014). https://doi.org/10.1080/15583724.2013.848455

    Article  CAS  Google Scholar 

  10. N. Kaur, M. Singh, D. Pathak, T. Wagner, J.M. Nunzi, Organic materials for photovoltaic applications: review and mechanism. Synth. Met. 190, 20–26 (2014). https://doi.org/10.1016/j.synthmet.2014.01.022

    Article  CAS  Google Scholar 

  11. M.J. Iqbal, H. Haq, S. Riaz, M.A. Raza, M.Z. Iqbal, M.U. Chaudhry, S. Naseem, On the operational, shelf life and degradation mechanism in polymer field effect transistors. Superlattices Microstruct. 126, 125–131 (2019). https://doi.org/10.1016/j.spmi.2018.12.022

    Article  ADS  CAS  Google Scholar 

  12. M.Z. Iqbal, S. Khan, A. Rehman, S.S. Haider, M.A. Kamran, M.R. Abdul Karim, T. Alharbi, T. Hussain, S. Riaz, S. Naseem, M.J. Iqbal, Enhancement in the mobility of solution processable polymer based FET by incorporating graphene interlayer. Superlattices Microstruct. 137, 106331 (2020). https://doi.org/10.1016/j.spmi.2019.106331

    Article  CAS  Google Scholar 

  13. P. Prisawong, P. Zalar, A. Reuveny, N. Matsuhisa, W. Lee, T. Yokota, T. Someya, Vacuum ultraviolet treatment of self-assembled monolayers: a tool for understanding growth and tuning charge transport in organic field-effect transistors. Adv. Mater. 28, 2049–2054 (2016). https://doi.org/10.1002/adma.201504724

    Article  CAS  Google Scholar 

  14. J. Wen, C. Xiao, A. Lv, H. Hayashi, L. Zhang, Tuning the electronic properties of thiophene-annulated NDIs: the influence of the lateral fusion position. Chem. Commun. 54, 5542–5545 (2018). https://doi.org/10.1039/C8CC02534G

    Article  CAS  Google Scholar 

  15. M. Kang, D. Khim, J. Kim, H.J. Lee, J.Y. Jo, K.-J. Baeg, D.-Y. Kim, Tuning non-volatile memory characteristics via molecular doping of polymer semiconductors based on ambipolar organic field-effect transistors. Org. Electron. 58, 12–17 (2018). https://doi.org/10.1016/j.orgel.2018.03.043

    Article  ADS  CAS  Google Scholar 

  16. E. Orgiu, P. Samorì, 25th anniversary article: organic electronics marries photochromism: generation of multifunctional interfaces, materials, and devices. Adv. Mater. 26, 1827–1845 (2014). https://doi.org/10.1002/adma.201304695

    Article  CAS  PubMed  Google Scholar 

  17. G. Horowitz, Organic field-effect transistors. Adv. Mater. 10, 365–377 (1998)

    Article  CAS  Google Scholar 

  18. H. Klauk, D.J. Gundlach, T.N. Jackson, Fast organic thin-film transistor circuits. IEEE Electron Device Lett. 20, 289–291 (1999)

    Article  ADS  CAS  Google Scholar 

  19. T.T. Dao, H. Murata, Tunable threshold voltage of organic CMOS Inverter circuits by electron trapping in bilayer gate dielectrics. IEICE Tran. Electron. E98.C, 422–428 (2015). https://doi.org/10.1587/transele.E98.C.422

    Article  ADS  Google Scholar 

  20. B. Mukherjee, Ambipolar organic field-effect transistor and inverter: Hybrid fabrication and high photoresponse, 2017 Devices for Integrated Circuit (DevIC). (2017) 236–240.

  21. K.-J. Baeg, Y.-Y. Noh, H. Sirringhaus, D.-Y. Kim, Controllable shifts in threshold voltage of top-gate polymer field-effect transistors for applications in organic nano floating gate memory. Adv. Func. Mater. 20, 224–230 (2010). https://doi.org/10.1002/adfm.200901677

    Article  CAS  Google Scholar 

  22. M. Marchl, M. Edler, A. Haase, A. Fian, G. Trimmel, T. Griesser, B. Stadlober, E. Zojer, Tuning the threshold voltage in organic thin-film transistors by local channel doping using photoreactive interfacial layers. Adv. Mater. 22, 5361–5365 (2010). https://doi.org/10.1002/adma.201002912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. J.F. MartínezHardigree, H.E. Katz, Through thick and thin: tuning the threshold voltage in organic field-effect transistors. Acc. Chem. Res. 47, 1369–1377 (2014). https://doi.org/10.1021/ar5000049

    Article  CAS  Google Scholar 

  24. D. Khim, E.-Y. Shin, Y. Xu, W.-T. Park, S.-H. Jin, Y.-Y. Noh, Control of threshold voltage for top-gated ambipolar field-effect transistor by gate buffer layer. ACS Appl. Mater. Interfaces. 8, 17416–17420 (2016). https://doi.org/10.1021/acsami.6b03671

    Article  CAS  PubMed  Google Scholar 

  25. M. Aghamohammadi, R. Rödel, U. Zschieschang, C. Ocal, H. Boschker, R.T. Weitz, E. Barrena, H. Klauk, Threshold-voltage shifts in organic transistors due to self-assembled monolayers at the dielectric: evidence for electronic coupling and dipolar effects. ACS Appl. Mater. Interfaces. 7, 22775–22785 (2015). https://doi.org/10.1021/acsami.5b02747

    Article  CAS  PubMed  Google Scholar 

  26. S. Iba, T. Sekitani, Y. Kato, T. Someya, H. Kawaguchi, M. Takamiya, T. Sakurai, S. Takagi, Control of threshold voltage of organic field-effect transistors with double-gate structures. Appl. Phys. Lett. 87, 023509 (2005). https://doi.org/10.1063/1.1995958

    Article  ADS  CAS  Google Scholar 

  27. L. Kergoat, L. Herlogsson, B. Piro, M.C. Pham, G. Horowitz, X. Crispin, M. Berggren, Tuning the threshold voltage in electrolyte-gated organic field-effect transistors. Proc. Natl. Acad. Sci. 109, 8394–8399 (2012). https://doi.org/10.1073/pnas.1120311109

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  28. S. Kobayashi, T. Nishikawa, T. Takenobu, S. Mori, T. Shimoda, T. Mitani, H. Shimotani, N. Yoshimoto, S. Ogawa, Y. Iwasa, Control of carrier density by self-assembled monolayers in organic field-effect transistors. Nat. Mater. 3, 317–322 (2004). https://doi.org/10.1038/nmat1105

    Article  ADS  CAS  PubMed  Google Scholar 

  29. W. Ou-Yang, M. Weis, D. Taguchi, X. Chen, T. Manaka, M. Iwamoto, Modeling of threshold voltage in pentacene organic field-effect transistors. J. Appl. Phys. 107, 124506 (2010). https://doi.org/10.1063/1.3449078

    Article  ADS  CAS  Google Scholar 

  30. K.P. Pernstich, S. Haas, D. Oberhoff, C. Goldmann, D.J. Gundlach, B. Batlogg, A.N. Rashid, G. Schitter, Threshold voltage shift in organic field effect transistors by dipole monolayers on the gate insulator. J. Appl. Phys. 96, 6431–6438 (2004). https://doi.org/10.1063/1.1810205

    Article  ADS  CAS  Google Scholar 

  31. Y.-Y. Noh, D.-Y. Kim, Organic phototransistor based on pentacene as an efficient red light sensor. Solid-State Electron. 51, 1052–1055 (2007). https://doi.org/10.1016/j.sse.2007.05.006

    Article  ADS  CAS  Google Scholar 

  32. Y.-Y. Noh, D.-Y. Kim, K. Yase, Highly sensitive thin-film organic phototransistors: effect of wavelength of light source on device performance. J. Appl. Phys. 98, 074505 (2005). https://doi.org/10.1063/1.2061892

    Article  ADS  CAS  Google Scholar 

  33. S.M. Mok, F. Yan, H.L.W. Chan, Organic phototransistor based on poly(3-hexylthiophene)/TiO2 nanoparticle composite. Appl. Phys. Lett. 93, 023310 (2008). https://doi.org/10.1063/1.2957981

    Article  ADS  CAS  Google Scholar 

  34. W. Boukhili, C. Tozlu, M. Mahdouani, S. Erten-Ela, R. Bourguiga, Illumination and dipole layer effects on the density of state distribution in n-type organic thin film phototransistors based on naphthalene bis-benzimidazole: experiment and modeling. Microelectron. Eng. 179, 37–47 (2017). https://doi.org/10.1016/j.mee.2017.04.027

    Article  CAS  Google Scholar 

  35. M.C. Hamilton, S. Martin, J. Kanicki, Thin-film organic polymer phototransistors. IEEE Trans. Electron Devices 51, 877–885 (2004). https://doi.org/10.1109/TED.2004.829619

    Article  ADS  CAS  Google Scholar 

  36. K. Wasapinyokul, W.I. Milne, D.P. Chu, Origin of the threshold voltage shift of organic thin-film transistors under light illumination. J. Appl. Phys. 109, 084510 (2011). https://doi.org/10.1063/1.3575334

    Article  ADS  CAS  Google Scholar 

  37. R. Liguori, W.C. Sheets, A. Facchetti, A. Rubino, Light-and bias-induced effects in pentacene-based thin film phototransistors with a photocurable polymer dielectric. Org. Electron. 28, 147–154 (2016)

    Article  CAS  Google Scholar 

  38. J. Li, Y. Zhao, H.S. Tan, Y. Guo, C.-A. Di, G. Yu, Y. Liu, M. Lin, S.H. Lim, Y. Zhou, H. Su, B.S. Ong, A stable solution-processed polymer semiconductor with record high-mobility for printed transistors. Sci. Rep. (2012). https://doi.org/10.1038/srep00754

    Article  PubMed  PubMed Central  Google Scholar 

  39. Y. Lei, N. Li, W.-K.E. Chan, B.S. Ong, F. Zhu, Highly sensitive near infrared organic phototransistors based on conjugated polymer nanowire networks. Org. Electron. 48, 12–18 (2017). https://doi.org/10.1016/j.orgel.2017.05.029

    Article  CAS  Google Scholar 

  40. H. Xu, J. Li, B.H.K. Leung, C.C.Y. Poon, B.S. Ong, Y. Zhang, N. Zhao, A high-sensitivity near-infrared phototransistor based on an organic bulk heterojunction. Nanoscale 5, 11850 (2013). https://doi.org/10.1039/c3nr03989g

    Article  ADS  CAS  PubMed  Google Scholar 

  41. A. Ortiz-Conde, F.J.G. Sánchez, J.J. Liou, A. Cerdeira, M. Estrada, Y. Yue, A review of recent MOSFET threshold voltage extraction methods. Microelectron. Reliab. 42, 583–596 (2002). https://doi.org/10.1016/S0026-2714(02)00027-6

    Article  Google Scholar 

  42. M.C. Hamilton, S. Martin, J. Kanicki, Field-Effect mobility of organic polymer thin-film transistors. Chem. Mater. 16, 4699–4704 (2004). https://doi.org/10.1021/cm049613r

    Article  CAS  Google Scholar 

  43. H.-S. Kang, C.-S. Choi, W.-Y. Choi, D.-H. Kim, K.-S. Seo, Characterization of phototransistor internal gain in metamorphic high-electron-mobility transistors. Appl. Phys. Lett. 84, 3780–3782 (2004). https://doi.org/10.1063/1.1739278

    Article  ADS  CAS  Google Scholar 

  44. P. Gu, Y. Yao, L. Feng, S. Niu, H. Dong, Recent advances in polymer phototransistors. Polym. Chem. 6, 7933–7944 (2015). https://doi.org/10.1039/C5PY01373A

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the stimulating discussions with Kashif Saghir and Hassan Farooq. We acknowledge the financial support from the Higher Education Commission (HEC) of Pakistan under the National Research Program for Universities (NRPU) with Grant No. 8758/Punjab/NRPU/R&D/HEC/2017. The author B. S. Almutairi acknowledges the funding by Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R327), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Funding

This work is supported by the Higher Education Commission (HEC) of Pakistan under the National Research Program for Universities (NRPU) with Grant No. 8758/Punjab/NRPU/R&D/HEC/2017. In addition, this research was supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R327), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

MJI: Conceptualization, Investigation, Supervision, Funding Acquisition, and Writing—Reviewing and Editing; TA: Investigation, Methodology, and Writing—Original draft preparation; MZI: Formal Analysis, Writing—Reviewing and Editing; BSA: Analysis, Writing—Reviewing and Editing, and Funding acquisition; Muhammad Nadeem: Writing—Reviewing and Editing; HH: Formal Analysis, Writing—Reviewing and Editing; FI: Formal Analysis, Writing—Reviewing and Editing; MAR: Analysis, Software, and Writing—Reviewing and Editing; SR: Resources, Writing—Reviewing and Editing; SN: Resources, Funding Acquisition, and Writing—Reviewing and Editing.

Corresponding author

Correspondence to M. Javaid Iqbal.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iqbal, M.J., Afzal, T., Iqbal, M.Z. et al. On the optical tuning of the threshold voltage for DPPDTT-based organic field effect transistors. Journal of Materials Research 39, 565–575 (2024). https://doi.org/10.1557/s43578-023-01250-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01250-z

Keywords

Navigation