Skip to main content
Log in

Investigation of shape memory and mechanical properties of styrenic thermoplastic elastomer/PCL blends: Effect of blend composition

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this study, heat-responsive shape memory thermoplastic polymer blends were developed using a solution blending technique. The blends consisted of maleic anhydride grafted SEBS (SEBS-g-MA) as the elastomer phase and poly(caprolactone) (PCL) as the switch phase. The investigation focused on understanding the effects of blend composition on morphological and mechanical properties. Blends containing 40 and 50 wt % of PCL (SEBS60 and SEBS50, respectively) exhibited a co-continuous morphology. Increasing the PCL content led to higher Young’s modulus and storage modulus at room temperature, while decreasing the creep strain. Shape-memory tests demonstrated promising results, with shape fixing ratios (Rf) reaching up to 98.54% and shape recovery ratios (Rr) up to 84.01%. Notably, the SEBS60 blend displayed the best shape-memory performance, achieving an Rf value of 97.15% and an Rr value of 76.29%. Cyclic shape-memory tests for the same blend maintained Rf values above 96% and Rr values above 82%.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

The data are not publicly available.

Code availability

Not applicable.

References

  1. H. Meng, G. Li, A review of stimuli-responsive shape memory polymer composites. Polymer 54(9), 2199 (2013). https://doi.org/10.1016/j.polymer.2013.02.023

    Article  CAS  Google Scholar 

  2. W. Wang, Y. Liu, J. Leng, Recent developments in shape memory polymer nanocomposites: actuation methods and mechanisms. Coord. Chem. Rev. 320, 38 (2016). https://doi.org/10.1016/j.ccr.2016.03.007

    Article  CAS  Google Scholar 

  3. A. Ben Abdallah, F. Gamaoun, A. Kallel, A. Tcharkhtchi, Molecular weight influence on shape memory effect of shape memory polymer blend (poly (caprolactone)/styrene-butadiene-styrene). J. Appl. Polym. Sci. 138(5), 49761 (2021). https://doi.org/10.1002/app.49761

    Article  CAS  Google Scholar 

  4. J. Li, T. Liu, S. Xia, Y. Pan, Z. Zheng, X. Ding, Y. Peng, A versatile approach to achieve quintuple-shape memory effect by semi-interpenetrating polymer networks containing broadened glass transition and crystalline segments. J. Mater. Chem. 21(33), 12213 (2011). https://doi.org/10.1039/C1JM12496J

    Article  CAS  Google Scholar 

  5. E. Tekay, Thermo-responsive shape memory behavior of poly (styrene-b-isoprene-b-styrene)/ethylene-1-octene copolymer thermoplastic elastomer blends. Polym. Adv. Technol. 32(1), 428 (2021). https://doi.org/10.1002/pat.5139

    Article  CAS  Google Scholar 

  6. S. Song, J. Feng, P. Wu, A new strategy to prepare polymer-based shape memory elastomers. Macromol. Rapid Commun. 32(19), 1569 (2011). https://doi.org/10.1002/marc.201100298

    Article  CAS  Google Scholar 

  7. E. Tekay, Isıl-duyarlı şekil hafızalı kopoliester termoplastik elastomer (COPE) ve poli (etilen-ko-vinil asetat)(EVA) polimer harmanlarının hazırlanması. Fac. Eng. Archit. Gazi Univ. 36(1), 241 (2020). https://doi.org/10.17341/gazimmfd.722364

    Article  Google Scholar 

  8. S.A. Abdullah, A. Jumahat, N.R. Abdullah, L. Frormann, Determination of shape fixity and shape recovery rate of carbon nanotube-filled shape memory polymer nanocomposites. Procedia Eng. 41, 1641 (2012). https://doi.org/10.1016/j.proeng.2012.07.362

    Article  CAS  Google Scholar 

  9. X. Jing, H.-Y. Mi, H.-X. Huang, L.-S. Turng, Shape memory thermoplastic polyurethane (TPU)/poly (ε-caprolactone)(PCL) blends as self-knotting sutures. J. Mech. Behav. Biomed. Mater. 64, 94 (2016). https://doi.org/10.1016/j.jmbbm.2016.07.023

    Article  CAS  Google Scholar 

  10. C. Schmidt, K. Neuking, G. Eggeler, Functional fatigue of shape memory polymers. Adv. Eng. Mater. 10(10), 922 (2008). https://doi.org/10.1002/adem.200800213

    Article  CAS  Google Scholar 

  11. Y. Guo, J. Ma, Z. Lv, N. Zhao, L. Wang, Q. Li, The effect of plasticizer on the shape memory properties of poly (lactide acid)/poly (ethylene glycol) blends. J. Mater. Res. 33(23), 4101 (2018). https://doi.org/10.1557/jmr.2018.359

    Article  CAS  Google Scholar 

  12. K.P. Mineart, S.S. Tallury, T. Li, B. Lee, R.J. Spontak, Phase-change thermoplastic elastomer blends for tunable shape memory by physical design. Ind. Eng. Chem. Res. 55(49), 12590 (2016). https://doi.org/10.1021/acs.iecr.6b04039

    Article  CAS  Google Scholar 

  13. G. Holden, E. Bishop, N.R. Legge, Thermoplastic elastomers. J. Polym Sci Part C 26, 37 (1969)

    Article  Google Scholar 

  14. A. Wilkinson, M. Clemens, V. Harding, The effects of SEBS-g-maleic anhydride reaction on the morphology and properties of polypropylene/PA6/SEBS ternary blends. Polymer 45(15), 5239 (2004). https://doi.org/10.1016/j.polymer.2004.05.033

    Article  CAS  Google Scholar 

  15. Z. Kordjazi, N.G. Ebrahimi, Rheological behavior of noncompatibilized and compatibilized PP/PET blends with SEBS-g-MA. J. Appl. Polym. Sci. 116(1), 441 (2010). https://doi.org/10.1002/app.31471

    Article  CAS  Google Scholar 

  16. W. Liu, R. Zhang, M. Huang, X. Dong, W. Xu, N. Ray, J. Zhu, Design and structural study of a triple-shape memory PCL/PVC blend. Polymer 104, 115 (2016). https://doi.org/10.1016/j.polymer.2016.09.079

    Article  CAS  Google Scholar 

  17. E.G. Choubar, M.H. Nasirtabrizi, F. Salimi, N. Sohrabi-gilani, A. Sadeghianamryan, Fabrication and in vitro characterization of novel co-electrospun polycaprolactone/collagen/polyvinylpyrrolidone nanofibrous scaffolds for bone tissue engineering applications. J. Mater. Res. 37(23), 4140 (2022). https://doi.org/10.1557/s43578-022-00778-w

    Article  CAS  Google Scholar 

  18. A. Sali, S. Duzyer Gebizli, G. Goktalay, Silymarin-loaded electrospun polycaprolactone nanofibers as wound dressing. J. Mater. Res. 38(8), 2251 (2023). https://doi.org/10.1557/s43578-023-00959-1

    Article  CAS  Google Scholar 

  19. W. Kuang, P.T. Mather, A latent crosslinkable PCL-based polyurethane: synthesis, shape memory, and enzymatic degradation. J. Mater. Res. 33(17), 2463 (2018). https://doi.org/10.1557/jmr.2018.220

    Article  CAS  Google Scholar 

  20. H. Zhang, H. Wang, W. Zhong, Q. Du, A novel type of shape memory polymer blend and the shape memory mechanism. Polymer 50(6), 1596 (2009). https://doi.org/10.1016/j.polymer.2009.01.011

    Article  CAS  Google Scholar 

  21. E. Tekay, Preparation and characterization of electro-active shape memory PCL/SEBS-g-MA/MWCNT nanocomposites. Polymer 209, 122989 (2020). https://doi.org/10.1016/j.polymer.2020.122989

    Article  CAS  Google Scholar 

  22. B. Peng, Y. Yang, T. Ju, K.A. Cavicchi, Fused filament fabrication 4D printing of a highly extensible, self-healing, shape memory elastomer based on thermoplastic polymer blends. ACS Appl. Mater. Interfaces 13(11), 12777 (2020). https://doi.org/10.1021/acsami.0c18618

    Article  CAS  Google Scholar 

  23. E. Tekay, S. Şen, M.A. Korkmaz, N. Nugay, Preparation and characterization of thermo-responsive shape memory ester-based polymer blends. J. Mater. Sci. 58(19), 8241 (2023). https://doi.org/10.1007/s10853-023-08549-6

    Article  CAS  Google Scholar 

  24. R. Nehra, S.N. Maiti, J. Jacob, Analytical interpretations of static and dynamic mechanical properties of thermoplastic elastomer toughened PLA blends. J. Appl. Polym. Sci. 135(1), 45644 (2018). https://doi.org/10.1002/app.45644

    Article  CAS  Google Scholar 

  25. M. Vanneste, G. Groeninckx, Ternary blends of PCL, SAN15 and SMA14: miscibility, crystallization and melting behaviour, and semicrystalline morphology. Polymer 36(22), 4253 (1995). https://doi.org/10.1016/0032-3861(95)92221-Y

    Article  CAS  Google Scholar 

  26. S. Moradi, J.K. Yeganeh, Highly toughened poly (lactic acid)(PLA) prepared through melt blending with ethylene-co-vinyl acetate (EVA) copolymer and simultaneous addition of hydrophilic silica nanoparticles and block copolymer compatibilizer. Polym. Test. 91, 106735 (2020). https://doi.org/10.1016/j.polymertesting.2020.106735

    Article  CAS  Google Scholar 

  27. M. Kashif, Y.-W. Chang, Triple-shape memory effects of modified semicrystalline ethylene–propylene–diene rubber/poly (ε-caprolactone) blends. Eur. Polym. J. 70, 306 (2015). https://doi.org/10.1016/j.eurpolymj.2015.07.026

    Article  CAS  Google Scholar 

  28. M. Sabzi, M. Babaahmadi, M. Rahnama, Thermally and electrically triggered triple-shape memory behavior of poly (vinyl acetate)/poly (lactic acid) due to graphene-induced phase separation. ACS Appl. Mater. Interfaces 9(28), 24061 (2017). https://doi.org/10.1021/acsami.7b02259

    Article  CAS  Google Scholar 

  29. D. Ponnamma, K.K. Sadasivuni, M. Strankowski, P. Moldenaers, S. Thomas, Y. Grohens, Interrelated shape memory and Payne effect in polyurethane/graphene oxide nanocomposites. RSC Adv. 3(36), 16068 (2013). https://doi.org/10.1039/C3RA41395K

    Article  CAS  Google Scholar 

  30. S.M. Lai, X.F. Wang, Shape memory properties of olefin block copolymer (OBC)/poly (ɛ-caprolactone)(PCL) blends. J. Appl. Polym. Sci. 134(44), 45475 (2017). https://doi.org/10.1002/app.45475

    Article  CAS  Google Scholar 

  31. Y. Wei, R. Huang, P. Dong, X.-D. Qi, Q. Fu, Preparation of polylactide/poly (ether) urethane blends with excellent electro-actuated shape memory via incorporating carbon black and carbon nanotubes hybrids fillers. Chin. J. Polym. Sci. 36, 1175 (2018). https://doi.org/10.1007/s10118-018-2138-3

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Supports given by The Scientific and Technological Research Council of Türkiye (TUBITAK) (Project No. 221M074) and Yalova University Scientific Research Projects Coordination Department are gratefully acknowledged.

Funding

This work was supported by The Scientific and Technological Research Council of Türkiye (TUBITAK) (Project No. 221M074) and Yalova University Scientific Research Projects Coordination Department.

Author information

Authors and Affiliations

Authors

Contributions

ET: conceptualization, supervision, methodology design, writing-reviewing-editing of the manuscript, material preparation, and characterizations of the materials. SŞ: writing-reviewing-editing of the manuscript, and characterizations of the materials.

Corresponding author

Correspondence to Emre Tekay.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 808 KB)

Supplementary file2 (MP4 62969 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tekay, E., Şen, S. Investigation of shape memory and mechanical properties of styrenic thermoplastic elastomer/PCL blends: Effect of blend composition. Journal of Materials Research 38, 5065–5077 (2023). https://doi.org/10.1557/s43578-023-01225-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01225-0

Keywords

Navigation