Abstract
Halide Double perovskites are promising materials for generating green energy that could fulfill worldwide desires for addressing energy scarcity crises. The structural stabilities of the scrutinized materials have been ascertained from the simulated formation energy and Goldsmith tolerance factor. On the other hand, the demonstrated Pugh's ratio depicts the ductile nature of the studied materials. The electronic band structure and density of states are determined using Generalised gradient approximation and modified Becke-Johnson potential. The calculated magnetic moment is 5 μB, mainly due to the contribution of the d -Mn atom. Our obtained values show a significant light absorption in the visible range, which illustrates the materials' potential for use in optoelectronic devices. The thermoelectric properties have also been investigated regarding Seebeck coefficient, electrical conductivity, thermal conductivity, and figure of merit zT.
Graphical abstract
With deeper analysis on a ground level, the electronic charge density shown in Fig. 3 offers a substantial and fascinating study of the nature of hybridization among the various atomic orbitals. Here, to visualize chemical bonding, we looked at charge density plots in the (110) plane. As a result, this study includes the covalent nature of the bond between chlorine and manganese as well as the ionic nature of the bond between rubidium and chlorine. In Rb2MgMnBr6 and Rb2MgMnI6 a similar type of bonding has also been found. Therefore, the entire study indicates that these semiconductor alloy systems have well-maintained polar covalent bonding, which is a combination of covalent and ionic bonds.
Similar content being viewed by others
Data availability
The datasets generated during and/or analyzed during the current study would be available from the corresponding author upon reasonable request.
References
G. Pilania, P.V. Balachandran, C. Kim, T. Lookman, Front. Mater. Sci. 3, 1–7 (2016)
E.A. Moore, Inorg. chem. 104, 46–63 (2008)
J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Gratzel, Nature 499, 316–319 (2013)
M.A. Loi, J.C. Hummelen, Nat. Mater. 12, 1087–1089 (2013)
H.J. Snaith, Perovskites, The emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 4, 3623–3630 (2013)
F. Hao, C.C. Stoumpos, R.P.H. Chang, M.G. Kanatzidis, J. Am. Chem. Soc.Am. Chem. Soc. 136, 8049–8099 (2014)
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 17, 6050–6051 (2009)
I. Grinberg, D.V. West, M. Torres, G. Gou, D.M. Stein, L. Wu, C. Chen, E.M. Gallo, A.R. Akbashev, P.K. Davies, J.E. Spanier, A.M. Rappe, Nature 503, 509–512 (2013)
F. Wang, I. Grinberg, A.M. Rappe, Phys. Rev. B 89, 1–6 (2014)
R. Nechache, C. Harnagea, S. Li, L. Cardenas, W. Huang, J. Chakrabartty, F. Rosei, Nat. Photonics 9, 1–7 (2015)
Y.P. Liu, S.H. Chen, J.C. Tung, Y.K. Wang, Solid State Commun. 152, 968–973 (2012)
R.F. Berger, J.B. Neaton, Phys. Rev. B 86, 1–7 (2012)
N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993–2006 (1991)
P. Giannozzi, S. Baroni, N. Bonini, J. Phys. Condens. Matter 21, 1–19 (2009)
A. Zhang, Y. Chen, J. Yan, J. Quant. Electron. 52, 1–6 (2016)
H. Dixit, D. Punetha, S.K. Pandey, Optik 179, 969–976 (2019)
X. Sun, R. Asadpour, W. Nie, A.D. Mohite, M.A. Alam, IEEE J. Photovolt 5, 1389–1394 (2015)
L. Rakocevic, R. Gehlhaar, T. Merckx, W. Qiu, U.W. Paetzold, H. Fledderus, J. Poortmans, IEEE J. Photovolt 7, 404–408 (2017)
M. Kepenekian, J. Even, J. Phys. Chem. Lett. 8, 3362–3370 (2017)
J. Li, P.M. Haney, Phys. Rev. B 93, 1–9 (2016)
P. Odenthal, W. Talmadge, N. Gundlach, R. Wang, C. Zhang, D. Sun, Z.-G. Yu, Z.V. Vardeny, Y.S. Li, Nat. Phys. 13, 894–899 (2017)
S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Moln’ar, M.L. Roukes, A.Y. Chtchelkanova, D.M. Trege, Science 294, 1488–1495 (2001)
V.K. Joshi, Int. J. Eng. Sci. Technol. 19, 1503–1513 (2016)
A.Q. Seh, D.C. Gupta, Int. J. Energy Res. 43, 8864–8877 (2019)
C.-Y. You, S.D. Bader, J. Appl. Phys. 87, 5215–5217 (2000)
T. Endoh, H. Honjo, J. Low Power Electron. Appl. 7, 1–17 (2018)
S. Kokado, Y. Sakuraba, M. Tsunoda, Jpn. J. Appl. Phys. 55, 1–3 (2016)
J. Zhou, Z. Xia, M.S. Molokeev, X. Zhang, D. Peng, Q. Liu, J. Mater. Chem. 5, 15031–15037 (2017)
G.A. Voyiatzis, A.G. Kalampounias, G.N. Papatheodoro, Phys. Chem. Chem. Phys. 1, 4797–4803 (1999)
M.L. Marsh, T.E. Albrecht-Schmitt, Dalton Trans. 46, 9316–9333 (2017)
K.W. Bagnall, J.B. Laidler, M.A.A. Stewart, Chem. Soc. A (1968). https://doi.org/10.1039/j19680000133
O.V. Yakubovicha, G.V. Kiryukhinaa, O.V. Dimitrova, Crystallogr. Rep. 58, 412–415 (2013)
L.R. Morss, M. Siegal, L. Stenger, N. Edelstei, Inorg. Chem. 9, 1771–1775 (1970)
X. Cao, L. Kang, S. Guo, M. Zhang, Z. Lin, J. Gao, A.C.S. Appl, Mater. Interfaces 11, 38648–38653 (2019)
B. Cai, X. Chen, M. Xie, S. Zhang, X. Liu, J. Yang, W. Zhou, S. Guo, H. Zeng, Mater. Horiz. 5, 961–967 (2018)
E. Haque, M.A. Hossain, J. Alloys Compd. 748, 63–72 (2018)
J. Luo, S. Li, H. Wu, Y. Zhou, Y. Li, J. Liu, J. Li, K. Li, F. Yi, G. Niu, ACS Photon 5, 398–405 (2018)
E. Haque, M.A. Hossain, Comput. Condens. Matter 16, 1–7 (2019)
M. Saeed, I.U. Haq, A.S. Saleemi, S.U. Rehman, B.U. Haq, A.R. Chaudhry, I. Khan, J. Phys. Chem. Solids. 160, 1–10 (2022)
S. Iqbal, G.M. Mustafa, M. Asghar, N.A. Noor, M.W. Iqbal, A. Mahmood, Y.H. Shin, Mater. Sci. Semicond. Process. 143, 1–8 (2022)
M. Nabi, T.M. Bhat, D.C. Gupta, J. Supercond. Nov. Magn. 32, 1751–1759 (2019)
S.A. Mir, D.C. Gupta, J. Magn. Magn. Mater. 493, 1–12 (2020)
M. Born, Math. Proc. Camb. Philos. Soc. 36, 160–172 (1940)
D. Abdullah, D.C. Gupta, Sci. Rep. 13(1), 12795 (2023)
D. Abdullah, D.C. Gupta, J. Magn. Magn. Mater. 569, 170474 (2023)
S.F. Pugh, Philos. Mag. 45, 823–843 (1954)
K. Brugger, J. Appl. Phys. 36, 768–773 (1965)
O.L. Anderson, J. Phys. Chem. Solid 7, 909–917 (1963)
M.A. Blanco, A.M. Pendas, E.J. Francisco, J. Mol. Struct. Theochem. 368, 245–255 (1996)
A. Otero-de-la-Roza, D.A. Perez, V. Luana, Comput. Phys. Commun. 182, 2232–2248 (2011)
A.O.D.L. Roza, V. Luaea, Phys. Rev. B 84, 1–20 (2011)
P. Kumar, S.A. Mir, D.C. Gupta, Int. J. Quantum Chem. 122, 1–14 (2021)
A.E. Rharib, A. Amine, A. Oukerroum, M.A. Kinani, Y. Mir, M. Zazoui, Comput. Condens. Matter 33, 1–10 (2022)
S. Al-Qaisi, M.A. Ali, T.A. Alrebdi, T.V. Vu, M. Morsi, B.U. Haq, R. Ahmed, Q. Mahmood, S.A. Tahir, Mater. Chem. Phys. 275, 125–138 (2022)
S. Mubashir, M.K. Butt, M. Yaseen, J. Iqbal, M. Iqbal, A. Murtaza, A. Laref, Optik 239, 166694 (2021)
R.B. Behram, M.A. Iqbal, S.M. Alay-E-Abbas, M. Sajjad, M. Yaseen, M.I. Arshad, G. Murtaza, Mater. Sci. Semicond. Process. 41, 297–303 (2016)
M. Yaseen, M.K. Butt, A. Ashfaq, J. Iqbal, M.M. Almoneef, M. Misbah, A. Iqbal, A. Murtaza, A. Laref, J. Mater. Res. Technol. 11, 2106–2113 (2021)
A.R. Oganov, J.P. Brodholt, G.D. Price, Nature 411, 934–937 (2001)
T. Seddik, R. Khenata, O. Merabiha, A. Bouhemadou, S. Bin-Omran, D. Rached, Appl. Phys. A 106, 645–653 (2012)
D. Abdullah, D.C. Gupta, Mater. Sci. Semicond. Process. 167, 107813 (2023)
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865–3867 (1996)
F. Tran, P. Blah, Phys. Rev. B. B 102, 1–4 (2009)
V.I.I. Anisimov, V. Solovyev, M.A. Korotin, M.T. Czyżyk, G.A. Sawatzky, Phys. Rev. B 48, 16929–16934 (1993)
Funding
The research work is not funded by any agency.
Author information
Authors and Affiliations
Contributions
Both authors have significantly contributed to the research. DA: conceptualization, methodology, writing—original draft, revision; and DCG: supervision, software, and modification.
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest in this work.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Abdullah, D., Gupta, D.C. Probing the structural, opto-electronic, mechanical, and thermoelectric properties of novel lead free semiconductor double perovskites Rb2MgMnX6 (X = Cl, Br, I): First principle study. Journal of Materials Research 39, 262–272 (2024). https://doi.org/10.1557/s43578-023-01220-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/s43578-023-01220-5