Skip to main content
Log in

Probing the structural, opto-electronic, mechanical, and thermoelectric properties of novel lead free semiconductor double perovskites Rb2MgMnX6 (X = Cl, Br, I): First principle study

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Halide Double perovskites are promising materials for generating green energy that could fulfill worldwide desires for addressing energy scarcity crises. The structural stabilities of the scrutinized materials have been ascertained from the simulated formation energy and Goldsmith tolerance factor. On the other hand, the demonstrated Pugh's ratio depicts the ductile nature of the studied materials. The electronic band structure and density of states are determined using Generalised gradient approximation and modified Becke-Johnson potential. The calculated magnetic moment is 5 μB, mainly due to the contribution of the d -Mn atom. Our obtained values show a significant light absorption in the visible range, which illustrates the materials' potential for use in optoelectronic devices. The thermoelectric properties have also been investigated regarding Seebeck coefficient, electrical conductivity, thermal conductivity, and figure of merit zT.

Graphical abstract

With deeper analysis on a ground level, the electronic charge density shown in Fig. 3 offers a substantial and fascinating study of the nature of hybridization among the various atomic orbitals. Here, to visualize chemical bonding, we looked at charge density plots in the (110) plane. As a result, this study includes the covalent nature of the bond between chlorine and manganese as well as the ionic nature of the bond between rubidium and chlorine. In Rb2MgMnBr6 and Rb2MgMnI6 a similar type of bonding has also been found. Therefore, the entire study indicates that these semiconductor alloy systems have well-maintained polar covalent bonding, which is a combination of covalent and ionic bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study would be available from the corresponding author upon reasonable request.

References

  1. G. Pilania, P.V. Balachandran, C. Kim, T. Lookman, Front. Mater. Sci. 3, 1–7 (2016)

    Google Scholar 

  2. E.A. Moore, Inorg. chem. 104, 46–63 (2008)

    CAS  Google Scholar 

  3. J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Gratzel, Nature 499, 316–319 (2013)

    Article  CAS  Google Scholar 

  4. M.A. Loi, J.C. Hummelen, Nat. Mater. 12, 1087–1089 (2013)

    CAS  Google Scholar 

  5. H.J. Snaith, Perovskites, The emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 4, 3623–3630 (2013)

    Article  CAS  Google Scholar 

  6. F. Hao, C.C. Stoumpos, R.P.H. Chang, M.G. Kanatzidis, J. Am. Chem. Soc.Am. Chem. Soc. 136, 8049–8099 (2014)

    Google Scholar 

  7. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 17, 6050–6051 (2009)

    Article  Google Scholar 

  8. I. Grinberg, D.V. West, M. Torres, G. Gou, D.M. Stein, L. Wu, C. Chen, E.M. Gallo, A.R. Akbashev, P.K. Davies, J.E. Spanier, A.M. Rappe, Nature 503, 509–512 (2013)

    Article  CAS  Google Scholar 

  9. F. Wang, I. Grinberg, A.M. Rappe, Phys. Rev. B 89, 1–6 (2014)

    CAS  Google Scholar 

  10. R. Nechache, C. Harnagea, S. Li, L. Cardenas, W. Huang, J. Chakrabartty, F. Rosei, Nat. Photonics 9, 1–7 (2015)

    Article  Google Scholar 

  11. Y.P. Liu, S.H. Chen, J.C. Tung, Y.K. Wang, Solid State Commun. 152, 968–973 (2012)

    Article  CAS  Google Scholar 

  12. R.F. Berger, J.B. Neaton, Phys. Rev. B 86, 1–7 (2012)

    Article  Google Scholar 

  13. N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993–2006 (1991)

    Article  CAS  Google Scholar 

  14. P. Giannozzi, S. Baroni, N. Bonini, J. Phys. Condens. Matter 21, 1–19 (2009)

    Article  Google Scholar 

  15. A. Zhang, Y. Chen, J. Yan, J. Quant. Electron. 52, 1–6 (2016)

    Google Scholar 

  16. H. Dixit, D. Punetha, S.K. Pandey, Optik 179, 969–976 (2019)

    Article  CAS  Google Scholar 

  17. X. Sun, R. Asadpour, W. Nie, A.D. Mohite, M.A. Alam, IEEE J. Photovolt 5, 1389–1394 (2015)

    Article  Google Scholar 

  18. L. Rakocevic, R. Gehlhaar, T. Merckx, W. Qiu, U.W. Paetzold, H. Fledderus, J. Poortmans, IEEE J. Photovolt 7, 404–408 (2017)

    Article  Google Scholar 

  19. M. Kepenekian, J. Even, J. Phys. Chem. Lett. 8, 3362–3370 (2017)

    Article  CAS  Google Scholar 

  20. J. Li, P.M. Haney, Phys. Rev. B 93, 1–9 (2016)

    CAS  Google Scholar 

  21. P. Odenthal, W. Talmadge, N. Gundlach, R. Wang, C. Zhang, D. Sun, Z.-G. Yu, Z.V. Vardeny, Y.S. Li, Nat. Phys. 13, 894–899 (2017)

    Article  CAS  Google Scholar 

  22. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Moln’ar, M.L. Roukes, A.Y. Chtchelkanova, D.M. Trege, Science 294, 1488–1495 (2001)

    Article  CAS  Google Scholar 

  23. V.K. Joshi, Int. J. Eng. Sci. Technol. 19, 1503–1513 (2016)

    Google Scholar 

  24. A.Q. Seh, D.C. Gupta, Int. J. Energy Res. 43, 8864–8877 (2019)

    CAS  Google Scholar 

  25. C.-Y. You, S.D. Bader, J. Appl. Phys. 87, 5215–5217 (2000)

    Article  CAS  Google Scholar 

  26. T. Endoh, H. Honjo, J. Low Power Electron. Appl. 7, 1–17 (2018)

    Google Scholar 

  27. S. Kokado, Y. Sakuraba, M. Tsunoda, Jpn. J. Appl. Phys. 55, 1–3 (2016)

    Article  Google Scholar 

  28. J. Zhou, Z. Xia, M.S. Molokeev, X. Zhang, D. Peng, Q. Liu, J. Mater. Chem. 5, 15031–15037 (2017)

    Article  CAS  Google Scholar 

  29. G.A. Voyiatzis, A.G. Kalampounias, G.N. Papatheodoro, Phys. Chem. Chem. Phys. 1, 4797–4803 (1999)

    Article  CAS  Google Scholar 

  30. M.L. Marsh, T.E. Albrecht-Schmitt, Dalton Trans. 46, 9316–9333 (2017)

    Article  CAS  Google Scholar 

  31. K.W. Bagnall, J.B. Laidler, M.A.A. Stewart, Chem. Soc. A (1968). https://doi.org/10.1039/j19680000133

    Article  Google Scholar 

  32. O.V. Yakubovicha, G.V. Kiryukhinaa, O.V. Dimitrova, Crystallogr. Rep. 58, 412–415 (2013)

    Article  Google Scholar 

  33. L.R. Morss, M. Siegal, L. Stenger, N. Edelstei, Inorg. Chem. 9, 1771–1775 (1970)

    Article  CAS  Google Scholar 

  34. X. Cao, L. Kang, S. Guo, M. Zhang, Z. Lin, J. Gao, A.C.S. Appl, Mater. Interfaces 11, 38648–38653 (2019)

    Article  CAS  Google Scholar 

  35. B. Cai, X. Chen, M. Xie, S. Zhang, X. Liu, J. Yang, W. Zhou, S. Guo, H. Zeng, Mater. Horiz. 5, 961–967 (2018)

    Article  CAS  Google Scholar 

  36. E. Haque, M.A. Hossain, J. Alloys Compd. 748, 63–72 (2018)

    Article  CAS  Google Scholar 

  37. J. Luo, S. Li, H. Wu, Y. Zhou, Y. Li, J. Liu, J. Li, K. Li, F. Yi, G. Niu, ACS Photon 5, 398–405 (2018)

    Article  CAS  Google Scholar 

  38. E. Haque, M.A. Hossain, Comput. Condens. Matter 16, 1–7 (2019)

    Google Scholar 

  39. M. Saeed, I.U. Haq, A.S. Saleemi, S.U. Rehman, B.U. Haq, A.R. Chaudhry, I. Khan, J. Phys. Chem. Solids. 160, 1–10 (2022)

    Article  Google Scholar 

  40. S. Iqbal, G.M. Mustafa, M. Asghar, N.A. Noor, M.W. Iqbal, A. Mahmood, Y.H. Shin, Mater. Sci. Semicond. Process. 143, 1–8 (2022)

    Article  Google Scholar 

  41. M. Nabi, T.M. Bhat, D.C. Gupta, J. Supercond. Nov. Magn. 32, 1751–1759 (2019)

    Article  CAS  Google Scholar 

  42. S.A. Mir, D.C. Gupta, J. Magn. Magn. Mater. 493, 1–12 (2020)

    Article  Google Scholar 

  43. M. Born, Math. Proc. Camb. Philos. Soc. 36, 160–172 (1940)

    Article  CAS  Google Scholar 

  44. D. Abdullah, D.C. Gupta, Sci. Rep. 13(1), 12795 (2023)

    Article  CAS  Google Scholar 

  45. D. Abdullah, D.C. Gupta, J. Magn. Magn. Mater. 569, 170474 (2023)

    Article  CAS  Google Scholar 

  46. S.F. Pugh, Philos. Mag. 45, 823–843 (1954)

    Article  CAS  Google Scholar 

  47. K. Brugger, J. Appl. Phys. 36, 768–773 (1965)

    Article  Google Scholar 

  48. O.L. Anderson, J. Phys. Chem. Solid 7, 909–917 (1963)

    Article  Google Scholar 

  49. M.A. Blanco, A.M. Pendas, E.J. Francisco, J. Mol. Struct. Theochem. 368, 245–255 (1996)

    Article  CAS  Google Scholar 

  50. A. Otero-de-la-Roza, D.A. Perez, V. Luana, Comput. Phys. Commun. 182, 2232–2248 (2011)

    Article  CAS  Google Scholar 

  51. A.O.D.L. Roza, V. Luaea, Phys. Rev. B 84, 1–20 (2011)

    Google Scholar 

  52. P. Kumar, S.A. Mir, D.C. Gupta, Int. J. Quantum Chem. 122, 1–14 (2021)

    Google Scholar 

  53. A.E. Rharib, A. Amine, A. Oukerroum, M.A. Kinani, Y. Mir, M. Zazoui, Comput. Condens. Matter 33, 1–10 (2022)

    Article  Google Scholar 

  54. S. Al-Qaisi, M.A. Ali, T.A. Alrebdi, T.V. Vu, M. Morsi, B.U. Haq, R. Ahmed, Q. Mahmood, S.A. Tahir, Mater. Chem. Phys. 275, 125–138 (2022)

    Article  Google Scholar 

  55. S. Mubashir, M.K. Butt, M. Yaseen, J. Iqbal, M. Iqbal, A. Murtaza, A. Laref, Optik 239, 166694 (2021)

    Article  CAS  Google Scholar 

  56. R.B. Behram, M.A. Iqbal, S.M. Alay-E-Abbas, M. Sajjad, M. Yaseen, M.I. Arshad, G. Murtaza, Mater. Sci. Semicond. Process. 41, 297–303 (2016)

    Article  CAS  Google Scholar 

  57. M. Yaseen, M.K. Butt, A. Ashfaq, J. Iqbal, M.M. Almoneef, M. Misbah, A. Iqbal, A. Murtaza, A. Laref, J. Mater. Res. Technol. 11, 2106–2113 (2021)

    Article  CAS  Google Scholar 

  58. A.R. Oganov, J.P. Brodholt, G.D. Price, Nature 411, 934–937 (2001)

    Article  CAS  Google Scholar 

  59. T. Seddik, R. Khenata, O. Merabiha, A. Bouhemadou, S. Bin-Omran, D. Rached, Appl. Phys. A 106, 645–653 (2012)

    Article  CAS  Google Scholar 

  60. D. Abdullah, D.C. Gupta, Mater. Sci. Semicond. Process. 167, 107813 (2023)

    Article  CAS  Google Scholar 

  61. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865–3867 (1996)

    Article  CAS  Google Scholar 

  62. F. Tran, P. Blah, Phys. Rev. B. B 102, 1–4 (2009)

    Google Scholar 

  63. V.I.I. Anisimov, V. Solovyev, M.A. Korotin, M.T. Czyżyk, G.A. Sawatzky, Phys. Rev. B 48, 16929–16934 (1993)

    Article  CAS  Google Scholar 

Download references

Funding

The research work is not funded by any agency.

Author information

Authors and Affiliations

Authors

Contributions

Both authors have significantly contributed to the research. DA: conceptualization, methodology, writing—original draft, revision; and DCG: supervision, software, and modification.

Corresponding authors

Correspondence to Danish Abdullah or Dinesh C. Gupta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 644 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullah, D., Gupta, D.C. Probing the structural, opto-electronic, mechanical, and thermoelectric properties of novel lead free semiconductor double perovskites Rb2MgMnX6 (X = Cl, Br, I): First principle study. Journal of Materials Research 39, 262–272 (2024). https://doi.org/10.1557/s43578-023-01220-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01220-5

Keywords

Navigation