Skip to main content
Log in

Constructing FeCoNiCrAl high entropy alloys with tunable nanograin size and crystal structure to boost polarization loss for enhanced microwave absorption performances

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Understanding of the relationship between grain size and crystal structure and electromagnetic wave absorption properties of high-entropy alloys (HEAs) is essential for the design of enhanced HEAs absorbers. In this work, the FeCoNiCrAl HEAs with tunable grain size and crystal structure are prepared by ball milling and annealing. It is found that the A-85h sample with a four-phase structure (BCC, FCC, B2, and NiFe2O4 phases) and small grain size has the best absorption performance at an ultra-thin matching thickness (1.5 mm), where the minimum reflection loss (RLmin) is − 45.0 dB and the maximum absorption bandwidth (EAB) is 4.3 GHz. The complex crystal structure and small grain size lead to enhanced polarization loss, which enables effective complementarity of dielectric and magnetic losses, and improves impedance matching and attenuation constants to enhance absorption. This work provides a valuable reference for designing high-performance microwave absorption materials.

Graphical abstract

Microwave absorption performance of A-85h sample

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Data availability

Data are available on request to the authors.

References

  1. B. Jiang, C. Qi, H. Yang, X. Wu, W. Yang, C. Zhang, S. Li, L. Wang, Y. Li, Recent advances of carbon-based electromagnetic wave absorption materials facing the actual situations. Carbon 208, 390–409 (2023)

    Article  CAS  Google Scholar 

  2. Y. Xia, W. Gao, C. Gao, A review on graphene-based electromagnetic functional materials: electromagnetic wave shielding and absorption. Adv. Funct. Mater. 32, 2204591 (2022)

    Article  CAS  Google Scholar 

  3. X. Li, G. Wang, Q. Li, Y. Wang, X. Lu, Dual optimized Ti3C2Tx MXene@ ZnIn2S4 heterostructure based on interface and vacancy engineering for improving electromagnetic absorption. Chem. Eng. J. 453, 139488 (2023)

    Article  CAS  Google Scholar 

  4. X. Zhang, J. Xu, H. Yuan, S. Zhang, Q. Ouyang, C. Zhu, X. Zhang, Y. Chen, Large-scale synthesis of three-dimensional reduced graphene oxide/nitrogen-doped carbon nanotube heteronanostructures as highly efficient electromagnetic wave absorbing materials. ACS Appl. Mater. Inter. 11, 39100–39108 (2019)

    Article  CAS  Google Scholar 

  5. H. Lv, X. Liang, Y. Cheng, H. Zhang, D. Tang, B. Zhang, G. Ji, Y. Du, Coin-like α-Fe2O3@CoFe2O4 core–shell composites with excellent electromagnetic absorption performance. ACS Appl. Mater. Inter. 7, 4744–4750 (2015)

    Article  CAS  Google Scholar 

  6. H. Zhang, F. Cao, H. Xu, W. Tian, Y. Pan, N. Mahmood, X. Jian, Plasma-enhanced interfacial engineering of FeSiAl@PUA@SiO2 hybrid for efficient microwave absorption and anti-corrosion. Nano Res. 16, 645–653 (2022)

    Article  Google Scholar 

  7. D. Gui, X. Ren, Investigation on electromagnetic properties of La–Al co-doped Co2W hexagonal ferrites for microwave absorption. Ceram. Int. 49, 14079–14089 (2023)

    Article  CAS  Google Scholar 

  8. E.P. George, W. Curtin, C.C. Tasan, High entropy alloys: A focused review of mechanical properties and deformation mechanisms. Acta Mater. 188, 435–474 (2020)

    Article  CAS  Google Scholar 

  9. A.O. Moghaddam, N.A. Shaburova, M.V. Sudarikov, S.N. Veselkov, O.V. Samoilova, E.A. Trofimov, High temperature oxidation resistance of Al0.25CoCrFeNiMn and Al0.45CoCrFeNiSi045 high entropy alloys. Vacuum 192, 110412 (2021)

    Article  Google Scholar 

  10. C. Chen, H. Zhang, Y. Fan, R. Wei, W. Zhang, T. Wang, T. Zhang, K. Wu, F. Li, S. Guan, Improvement of corrosion resistance and magnetic properties of FeCoNiAl0.2Si0.2 high entropy alloy via rapid-solidification. Intermetallics 122, 106778 (2020)

    Article  CAS  Google Scholar 

  11. J. Duan, M. Wang, R. Huang, J. Miao, Y. Lu, T. Wang, T. Li, A novel high-entropy alloy with an exceptional combination of soft magnetic properties and corrosion resistance. Sci. China Mater. 66, 772–779 (2022)

    Article  Google Scholar 

  12. X. Liu, Y. Duan, Y. Guo, H. Pang, Z. Li, X. Sun, T. Wang, Microstructure design of high-entropy alloys through a multistage mechanical alloying strategy for temperature-stable megahertz electromagnetic absorption. Nano-Micro Lett. 14, 1–14 (2022)

    Article  Google Scholar 

  13. Y. Duan, Y. Cui, B. Zhang, G. Ma, W. Tongmin, A novel microwave absorber of FeCoNiCuAl high-entropy alloy powders: adjusting electromagnetic performance by ball milling time and annealing. J. Alloys Compd. 773, 194–201 (2019)

    Article  CAS  Google Scholar 

  14. G. Li, H. Zhao, H. Wang, Z. Zhou, L. Gao, W. Su, C. Dong, Enhanced microwave absorption performances of FeCoNiCuCr high entropy alloy by optimizing particle size dehomogenization. J. Alloys Compd. 941, 168822 (2023)

    Article  CAS  Google Scholar 

  15. Y. Duan, Z. Li, X. Liu, H. Pang, L. Huang, X. Sun, Y. Shi, Optimized microwave absorption properties of FeCoCrAlGdx high-entropy alloys by inhibiting nanograin coarsening. J. Alloys Compd. 921, 166088 (2022)

    Article  CAS  Google Scholar 

  16. H. Wu, D. Lan, B. Li, L. Zhang, Y. Fu, Y. Zhang, H. Xing, High-entropy alloy@ air@ Ni–NiO core-shell microspheres for electromagnetic absorption applications. Compos. B Eng. 179, 107524 (2019)

    Article  CAS  Google Scholar 

  17. J. Yang, Z. Liu, H. Zhou, L. Jia, A. Wu, L. Jiang, Enhanced electromagnetic-wave absorbing performances and corrosion resistance via tuning Ti contents in FeCoNiCuTix high-entropy alloys. ACS Appl. Mater. Inter. 14, 12375–12384 (2022)

    Article  CAS  Google Scholar 

  18. L. Hou, X. Fan, Q. Wang, W. Yang, B. Shen, Microstructure and soft-magnetic properties of FeCoPCCu nanocrystalline alloys. J. Mater. Sci. Technol. 35, 1655–1661 (2019)

    Article  CAS  Google Scholar 

  19. T.T. Zuo, R.B. Li, X.J. Ren, Y. Zhang, Effects of Al and Si addition on the structure and properties of CoFeNi equal atomic ratio alloy. J. Magn. Magn. Mater. 371, 60–68 (2014)

    Article  CAS  Google Scholar 

  20. Y. Duan, X. Sun, Z. Li, G. Ma, Q. Yu, G. Wei, L. Huang, X. Wang, H. Pang, X. Liu, High frequency magnetic behavior of FeCoNiMnxAl1−x high-entropy alloys regulated by ferromagnetic transformation. J. Alloys Compd. 900, 163428 (2022)

    Article  CAS  Google Scholar 

  21. A. Mao, P. Ding, F. Quan, T. Zhang, X. Ran, Y. Li, X. Jin, X. Gu, Effect of aluminum element on microstructure evolution and properties of multicomponent Al-Co-Cr-Cu-Fe-Ni nanoparticles. J. Alloys Compd. 735, 1167–1175 (2018)

    Article  CAS  Google Scholar 

  22. M.-H. Chuang, M.-H. Tsai, W.-R. Wang, S.-J. Lin, J.-W. Yeh, Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Mater. 59, 6308–6317 (2011)

    Article  CAS  Google Scholar 

  23. B.F. Zou, T.D. Zhou, J. Hu, Effect of amorphous evolution on structure and absorption properties of FeSiCr alloy powders. J. Magn. Magn. Mater. 335, 17–20 (2013)

    Article  CAS  Google Scholar 

  24. H. Zhou, L. Jiang, L. Jia, Z. Tang, L. Wang, A. Wu, X. Zhang, Ultrawide-frequency electromagnetic-wave absorption based on FeCoNiCuxMn high entropy alloys synthesized through swing ball-milling. J. Mater. Chem. C 10, 16696–16705 (2022)

    Article  CAS  Google Scholar 

  25. Y.-L. Chen, Y.-H. Hu, C.-A. Hsieh, J.-W. Yeh, S.-K. Chen, Competition between elements during mechanical alloying in an octonary multi-principal-element alloy system. J. Alloys Compd. 481, 768–775 (2009)

    Article  CAS  Google Scholar 

  26. R. Sun, X. Li, A. Xia, S. Su, C. Jin, Hexagonal SrFe12O19 ferrite with high saturation magnetization. Ceram. Int. 44, 13551–13555 (2018)

    Article  CAS  Google Scholar 

  27. Q. Zhang, H. Xu, X.H. Tan, X.L. Hou, S.W. Wu, G.S. Tan, L.Y. Yu, The effects of phase constitution on magnetic and mechanical properties of FeCoNi(CuAl)x (x = 0–1.2) high-entropy alloys. J. Alloys Compd. 693, 1061–1067 (2017)

    Article  CAS  Google Scholar 

  28. S. Luo, M. Yang, Z. Xu, T. Zhao, S.U. Rehman, X. Yu, S. Zhong, H. Wang, C. Jin, Q. Ma, B. Yang, Dependence of grain size on grain boundary diffusion mechanism of Nd-Fe-B sintered magnets. J. Alloys Compd. 942, 168999 (2023)

    Article  CAS  Google Scholar 

  29. H. Zhou, L. Jiang, S. Zhu, L. Wang, Y. Hu, X. Zhang, A. Wu, Excellent electromagnetic-wave absorbing performances and great harsh-environment resistance of FeCoNiCrxMn high entropy alloys. J. Alloys Compd. 936, 168282 (2023)

    Article  CAS  Google Scholar 

  30. Y. Duan, L. Song, Y. Cui, H. Pang, X. Zhang, T. Wang, FeCoNiCuAl high entropy alloys microwave absorbing materials: Exploring the effects of different Cu contents and annealing temperatures on electromagnetic properties. J. Alloys Compd. 848, 156491 (2020)

    Article  CAS  Google Scholar 

  31. Y. Duan, H. Pang, X. Wen, X. Zhang, T. Wang, Microwave absorption performance of FeCoNiAlCr0.9 alloy powders by adjusting the amount of process control agent. J. Mater. Sci. Technol. 77, 209–216 (2021)

    Article  CAS  Google Scholar 

  32. Y. Duan, X. Wen, B. Zhang, G. Ma, T. Wang, Optimizing the electromagnetic properties of the FeCoNiAlCrx high entropy alloy powders by composition adjustment and annealing treatment. J. Magn. Magn. Mater. 497, 165947 (2020)

    Article  CAS  Google Scholar 

  33. Z. Lou, Q. Wang, Y. Zhang, X. Zhou, R. Li, J. Liu, Y. Li, H. Lv, In-situ formation of low-dimensional, magnetic core-shell nanocrystal for electromagnetic dissipation. Compos. B Eng. 214, 108744 (2021)

    Article  CAS  Google Scholar 

  34. G. Chen, H. Liang, J. Yun, L. Zhang, H. Wu, J. Wang, Ultrasonic field induces better crystallinity and abundant defects at grain boundaries to develop Cus electromagnetic wave absorber. Adv. Mater. n/a, p. 2305586

  35. A. Marshal, K.G. Pradeep, D. Music, L. Wang, O. Petracic, J.M. Schneider, Combinatorial evaluation of phase formation and magnetic properties of FeMnCoCrAl high entropy alloy thin film library. Sci. Rep. 9, 7864 (2019)

    Article  CAS  Google Scholar 

  36. M. Qin, L. Zhang, X. Zhao, H. Wu, Lightweight Ni foam-based ultra-broadband electromagnetic wave absorber. Adv. Funct. Mater. 31, 2103436 (2021)

    Article  CAS  Google Scholar 

  37. Z. Yingzhe, C. Yudao, Q. Qingdong, L. Wei, Synthesis of FeCoNiCuZn single-phase high-entropy alloy by high-frequency electromagnetic-field assisted ball milling. J. Magn. Magn. Mater. 498, 166151 (2020)

    Article  Google Scholar 

  38. Y. Yu, W. Cui, Z. Xu, S. Wang, W. Jiang, R. Sun, L. Qi, K. Pan, High-entropy Pt18Ni26Fe15Co14Cu27 nanocrystalline crystals in situ grown on reduced graphene oxide with excellent electromagnetic absorption properties. J. Colloid Interf. Sci 639, 193–202 (2023)

    Article  CAS  Google Scholar 

  39. Z. Li, X. Liu, X. Liu, Enhanced microwave absorption performances of onion-like carbon coated FeNiCoCuTi high-entropy alloys nanocapsules. J. Alloys Compd. 920, 165960 (2022)

    Article  CAS  Google Scholar 

  40. L. Jia, L. Jiang, W. Zheng, J. Wu, J. Feng, Function of Si on the high-temperature oxidation of FeCoNiMnSix HEAs with excellent electromagnetic-wave absorption properties. J. Alloys Compd. 950, 169853 (2023)

    Article  CAS  Google Scholar 

  41. P. Yang, Y. Liu, X. Zhao, J. Cheng, H. Li, Electromagnetic wave absorption properties of FeCoNiCrAl0.8 high entropy alloy powders and its amorphous structure prepared by high-energy ball milling. J. Mater. Res. 31, 2398–2406 (2016)

    Article  CAS  Google Scholar 

  42. D. Lan, Z. Zhao, Z. Gao, K. Kou, G. Wu, H. Wu, Porous high entropy alloys for electromagnetic wave absorption. J. Magn. Magn. Mater. 512, 167065 (2020)

    Article  CAS  Google Scholar 

  43. H. Pang, Y. Duan, M. Gao, L. Huang, X. Liu, Z. Li, Electromagnetic wave absorption performance of FeCoNiMn0.5Al0.2 high entropy alloys governed by nanocrystal evolution. Mater. Today Nano 20, 100243 (2022)

    Article  CAS  Google Scholar 

  44. Y. Li, S. Shang, W. Zhang, Synthesis and electromagnetic wave absorption properties of FeCoNi(Si0.6Al0.2B0.2) high-entropy nanocrystalline alloy powders. AIP Adv. 9, 125045 (2019)

    Article  Google Scholar 

  45. H. Zhou, L. Jiang, S. Zhu, L. Jia, A. Wu, X. Zhang, Structure evolution and electromagnetic-wave absorption performances of multifunctional FeCoNiMnVx high entropy alloys with harsh-environment resistance. J. Alloys Compd. 946, 169402 (2023)

    Article  CAS  Google Scholar 

  46. H. Liang, L. Zhang, H. Wu, Exploration of twin-modified grain boundary engineering in metallic copper predominated electromagnetic wave absorber. Small 18, 2203620 (2022)

    Article  CAS  Google Scholar 

  47. H. Liang, G. Chen, D. Liu, Z. Li, S. Hui, J. Yun, L. Zhang, H. Wu, Exploring the Ni 3d orbital unpaired electrons induced polarization loss based on Ni single-atoms model absorber. Adv. Funct. Mater. 33, 2212604 (2023)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 52271174, 12304213, and 12227806) and the Natural Science Foundation of Zhejiang Province (No. LQ22A040008 and LY23E010007).

Author information

Authors and Affiliations

Authors

Contributions

TW has executed the work. YZ has made the initial manuscript and reviewed the manuscript. GB has reviewed the manuscript. XL has supervised the experimental process and results.

Corresponding author

Correspondence to Yanan Zhang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 10369 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Zhang, Y., Bai, G. et al. Constructing FeCoNiCrAl high entropy alloys with tunable nanograin size and crystal structure to boost polarization loss for enhanced microwave absorption performances. Journal of Materials Research 39, 248–261 (2024). https://doi.org/10.1557/s43578-023-01219-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01219-y

Navigation