Skip to main content
Log in

Augmenting the discovery of computationally complex ceramics for extreme environments with machine learning

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We present a high-throughput, material-agnostic strategy to discover new compositionally complex ceramics (C3) for extreme environments by utilizing machine learning (ML) techniques to predict the stoichiometries and properties of structures within a given design space. This example study focuses on a well-understood design space (Si–C–N) so that predictions may be validated. Evolutionary structure searches coupled with density functional theory (DFT) calculations are applied to find structures with low energies (i.e., lying on or close to the convex hull), while also maximizing a targeted property (in this case, hardness). The structure–property relationship data obtained throughout these searches are exploited in ML algorithms to create an accurate and efficient surrogate model of the energy and hardness landscapes. The ML models serve to screen structures with optimal attributes and reduce computational costs associated with the property calculations, thereby accelerating the discovery of new structures and stoichiometries with desired traits.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. A.R. Oganov, C.W. Glass, J. Chem. Phys. (2006). https://doi.org/10.1063/1.2210932

    Article  Google Scholar 

  2. A.R. Oganov, A.O. Lyakhov, M. Valle, Acc. Chem. Res. 44, 227 (2011)

    Article  CAS  Google Scholar 

  3. A.O. Lyakhov, A.R. Oganov, M. Valle, Comput. Phys. Commun. 181, 1623 (2010)

    Article  CAS  Google Scholar 

  4. W.W. Tipton, R.G. Hennig, J. Phys. Condens. Matter 25, 495401 (2013)

    Article  Google Scholar 

  5. B.C. Revard, W.W. Tipton, R.G. Hennig, Prediction and calculation of crystal structures: methods and applications, in Structure and stability prediction of compounds with evolutionary algorithms. ed. by S. Atahan-Evrenk, A. Aspuru-Guzik (Springer, Cham, 2014), pp.181–222

    Google Scholar 

  6. C.W. Glass, A.R. Oganov, N. Hansen, Comput. Phys. Commun. 175, 713 (2006)

    Article  CAS  Google Scholar 

  7. G. Trimarchi, A.J. Freeman, A. Zunger, Phys. Rev. B—Condens. Matter Mater. Phys. 80, 1 (2009)

    Article  Google Scholar 

  8. S.R. Xie, M. Rupp, R.G. Hennig, npj Comput. Mater. 9, 1 (2023)

    Article  Google Scholar 

  9. S. Honrao, B.E. Anthonio, R. Ramanathan, J.J. Gabriel, R.G. Hennig, Comput. Mater. Sci. 158, 414 (2019)

    Article  CAS  Google Scholar 

  10. S.J. Honrao, S.R. Xie, R.G. Hennig, J. Appl. Phys. 128, 085101 (2020)

    Article  CAS  Google Scholar 

  11. G. Pilania, C. Wang, X. Jiang, S. Rajasekaran, R. Ramprasad, Sci. Rep. 3, 1 (2013)

    Article  Google Scholar 

  12. M. Rupp, Int. J. Quantum Chem. 115, 1058 (2015)

    Article  CAS  Google Scholar 

  13. V. Botu, R. Ramprasad, Int. J. Quantum Chem. 115, 1074 (2015)

    Article  CAS  Google Scholar 

  14. D. Xue, P.V. Balachandran, J. Hogden, J. Theiler, D. Xue, T. Lookman, Nat. Commun. 7, 1 (2016)

    Google Scholar 

  15. Y. Tian, B. Xu, Z. Zhao, Int. J. Refract. Met. Hard Mater. 33, 93 (2012)

    Article  CAS  Google Scholar 

  16. X.-Q. Chen, H. Niu, D. Li, Y. Li, Intermetallics 19, 1275 (2011)

    Article  CAS  Google Scholar 

  17. A.O. Lyakhov, A.R. Oganov, Phys. Rev. B 84, 092103 (2011)

    Article  Google Scholar 

  18. K. Li, X. Wang, F. Zhang, D. Xue, Phys. Rev. Lett. 100, 235504 (2008)

    Article  Google Scholar 

  19. Q. Li, H. Wang, Y.M. Ma, J. Superhard Mater. 32, 192 (2010)

    Article  Google Scholar 

  20. V.A. Mukhanov, O.O. Kurakevych, V.L. Solozhenko, J. Superhard Mater. 32, 167 (2010)

    Article  Google Scholar 

  21. F.M. Gao, L.H. Gao, J. Superhard Mater. 32, 148 (2010)

    Article  Google Scholar 

  22. F. Gao, J. He, E. Wu, S. Liu, D. Yu, D. Li, S. Zhang, Y. Tian, Phys. Rev. Lett. 91, 015502 (2003)

    Article  Google Scholar 

  23. K. Li, X. Wang, D. Xue, J. Phys. Chem. A 112, 7894 (2008)

    Article  CAS  Google Scholar 

  24. A. Šimůnek, J. Vackář, Phys. Rev. Lett. 96, 5 (2006)

    Article  Google Scholar 

  25. A. Šimůnek, M. Dušek, Mech. Mater. 112, 71 (2017)

    Article  Google Scholar 

  26. A.R. Oganov, A.O. Lyakhov, J. Superhard Mater. 32, 143 (2010)

    Article  Google Scholar 

  27. A.A. Cheenady, A. Awasthi, G. Subhash, J. Mater. Sci. 56, 11711 (2021)

    Article  CAS  Google Scholar 

  28. A. R. Oganov, editor, Modern Methods of Crystal Structure Prediction (Wiley, 2010). https://doi.org/10.1002/9783527632831

  29. B. Meredig, C. Wolverton, Chem. Mater. 26, 1985 (2014)

    Article  CAS  Google Scholar 

  30. S.G. Javed, A. Khan, A. Majid, A.M. Mirza, J. Bashir, Comput. Mater. Sci. 39, 627 (2007)

    Article  CAS  Google Scholar 

  31. E. Stavrou, S. Lobanov, H. Dong, A.R. Oganov, V.B. Prakapenka, Z. Konôpková, A.F. Goncharov, Chem. Mater. 28, 6925 (2016)

    Article  CAS  Google Scholar 

  32. G. Kresse, J. Hafner, Phys. Rev. B 47, 558 (1993)

    Article  CAS  Google Scholar 

  33. G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996)

    Article  CAS  Google Scholar 

  34. G. Kresse, J. Furthmüller, Phys. Rev. B—Condens. Matter Mater. Phys. 54, 11169 (1996)

    Article  CAS  Google Scholar 

  35. A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K.A. Persson, APL Mater. (2013). https://doi.org/10.1063/1.4812323

    Article  Google Scholar 

  36. K. Li, D. Xue, J. Phys. Chem. A 110, 11332 (2006)

    Article  CAS  Google Scholar 

  37. L. Pauling, The Nature of the Chemical Bond (1960)

  38. N.E.R. Zimmermann, A. Jain, RSC Adv. 10, 6063 (2020)

    Article  CAS  Google Scholar 

  39. S.P. Ong, W.D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V.L. Chevrier, K.A. Persson, G. Ceder, Comput. Mater. Sci. 68, 314 (2013)

    Article  CAS  Google Scholar 

  40. R. Drautz, M. Fähnle, J.M. Sanchez, J. Phys. Condens. Matter 16, 3843 (2004)

    Article  CAS  Google Scholar 

  41. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, J. Mach. Learn. Res. 12, 2825 (2011)

    Google Scholar 

  42. J. Bergstra, Y. Bengio, J. Mach. Learn. Res. 13, 281 (2012)

    Google Scholar 

Download references

Funding

The research was sponsored by the University of Florida Artificial Intelligence Research Catalyst Fund.

Author information

Authors and Affiliations

Authors

Contributions

SB contributed toward conceptualization, data curation, formal analysis, funding acquisition, methodology, visualization, and writing—original draft. GS contributed toward conceptualization, project administration, resources, supervision, and writing—review & editing. RH contributed toward conceptualization, funding acquisition, software, supervision, and writing—review & editing.

Corresponding author

Correspondence to Ghatu Subhash.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bavdekar, S., Hennig, R.G. & Subhash, G. Augmenting the discovery of computationally complex ceramics for extreme environments with machine learning. Journal of Materials Research 38, 5055–5064 (2023). https://doi.org/10.1557/s43578-023-01217-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01217-0

Keywords

Navigation