Skip to main content
Log in

Structural characteristics and tribological properties of an ultrafine-grained Al–40Si–5Fe coating prepared by supersonic plasma spraying

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

High silicon aluminum alloy coatings (HSAACs) are characterized by high surface hardness and excellent wear resistance, and the fineness has a significant impact on their properties. In this study, Al–40Si–5Fe coating was prepared by supersonic plasma spraying using Al–35Si–4Fe powder as raw material. The coating contains a variety of strengthening structures such as amorphous, nanocrystalline and supersaturated solid solution. The average hardness of the coating reached up to 465.3 ± 24.4HV0.2, which was much higher than that of the Al–Si alloys/coatings prepared by various processes. Under the test conditions, the wear mechanism of the coating was dominated by fatigue wear with slight abrasive wear, and the wear rate was 1.88 × 10–4 mm3/N. A large amount of refined Si phase in the oxide film on the worn surface effectively prevented the cracking and spalling of the oxide film.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. F. Xu, D. Gong, Improved the elevated temperature mechanical properties of Al-Si alloy deposited with Al-Si coating by magnetron sputtering. Vacuum 150, 1–7 (2018). https://doi.org/10.1016/j.vacuum.2018.01.013

    Article  CAS  Google Scholar 

  2. C. Chen, C. Lu, X. Feng, Y. Shen, Effects of annealing on Al–Si coating synthesised by mechanical alloying. Surf. Eng. 33, 548–558 (2017). https://doi.org/10.1080/02670844.2017.1292706

    Article  CAS  Google Scholar 

  3. B. Torres, C. Taltavull, A.J. Lopez, M. Campo, J. Rams, Al/SiCp and Al11Si/SiCp coatings on AZ91 magnesium alloy by HVOF. Surf. Coat. Technol. 261, 130–140 (2015). https://doi.org/10.1016/j.surfcoat.2014.11.045

    Article  CAS  Google Scholar 

  4. S. Nikolaevich Grigoriev, T. Vasilievna Tarasova, G. Olegovna Gvozdeva, S. Nowotny, Structure formation of hypereutectic Al-Si alloys produced by laser surface treatment. Stroj. Vestn. J. 60, 389–394 (2014). https://doi.org/10.5545/sv-jme.2013.1211

    Article  Google Scholar 

  5. K. Nakata, M. Ushio, Wear resistance of plasma sprayed Al-Si binary alloy coatings on A6063 Al alloy substrate. Surf. Coat. Technol. 142, 277–282 (2001). https://doi.org/10.1016/S0257-8972(01)01088-X

    Article  Google Scholar 

  6. R. Subbiah, A. Arun, A.A. Lakshmi, A. Naga Sai Harika, N. Ram, N. Sateesh, Experimental study of wear behaviour on Al-2014 alloy coated with thermal spray HVOF (high velocity oxy-Fuel) and plasma spray process—a review. Mater. Today 18, 5151–5157 (2019). https://doi.org/10.1016/j.matpr.2019.07.512

    Article  CAS  Google Scholar 

  7. Y. Hao, J.-q Wang, X.-y Cui, J. Wu, T.-f Li, T.-y Xiong, Microstructure characteristics and mechanical properties of Al-12Si Coatings on AZ31 magnesium alloy produced by cold spray technique. J. Therm. Spray Technol. 25, 1020–1028 (2016). https://doi.org/10.1007/s11666-016-0409-5

    Article  CAS  Google Scholar 

  8. A. Grabowski, A. Lisiecki, M. Dyzia, J. Łabaj, S. Stano, The effect of laser wavelength on surface layer melting of the AlSi/SiC composite. J. Manuf. Process. 75, 627–636 (2022). https://doi.org/10.1016/j.jmapro.2022.01.031

    Article  Google Scholar 

  9. G. Rolink, A. Weisheit, T. Biermann, K. Bobzin, M. Öte, T.F. Linke, C. Schulz, I. Kelbassa, Investigations of laser clad, thermal sprayed and laser remelted AlSi20-coatings on magnesium alloy AZ31B under constant and cycling thermal load. Surf. Coat. Technol. 259, 751–758 (2014). https://doi.org/10.1016/j.surfcoat.2014.09.049

    Article  CAS  Google Scholar 

  10. Y.G. Zhang, K. Chong, Q. Liu, Y. Bai, Z.B. Zhang, D.T. Wu, Y. Zou, High-temperature tribological behavior of thermally-treated supersonic plasma sprayed Cr3C2-NiCr coatings. Int. J. Refract. Met. Hard Mater. 95, 105456 (2021). https://doi.org/10.1016/j.ijrmhm.2020.105456

    Article  CAS  Google Scholar 

  11. O. Xian, D. Chang-guang, W. Ri-chu, M. Jie, Influences of the supersonic plasma spraying process on the hardness properties of Cr2o3 coating. Surf. Technol. 43, 81–85 (2014). https://doi.org/10.16490/j.cnki.issn.1001-3660.2014.01.022

    Article  Google Scholar 

  12. Hh. Xi, He. Pf, Hd. Wang, M. Liu, C. Sy, X. Zg, Ma. Gz, Lv. Zl, Microstructure and mechanical properties of Mo coating deposited by supersonic plasma spraying. Int. J. Refract. Met. Hard Mater 86, 105095 (2020). https://doi.org/10.1016/j.ijrmhm.2019.105095

    Article  CAS  Google Scholar 

  13. P. Wei, Z. Wei, G. Zhao, J. Du, Y. Bai, The analysis of melting and refining process for in-flight particles in supersonic plasma spraying. Comput. Mater. Sci. 103, 8–19 (2015). https://doi.org/10.1016/j.commatsci.2015.03.007

    Article  CAS  Google Scholar 

  14. W. Zhang, D. Ding, P. Gao, High volume fraction Si particle-reinforced aluminium matrix composites fabricated by a filtration squeeze casting route. Mater. Des. 90, 834–838 (2016). https://doi.org/10.1016/j.matdes.2015.11.033

    Article  CAS  Google Scholar 

  15. X. Zhuangde, S. Jianfei, S. Jun, Z. Bide, S. Zhijun, L. Hongsheng, Characteristics and microstructure of hypereutectic Al-Si alloy powder by ultrasonic gas atomization process. Powder Metall. Technol. 20, 331–334 (2000). https://doi.org/10.19591/j.cnki.cn11-1974/tf.2001.06.004

    Article  Google Scholar 

  16. E. Karakose, M. Keskin, Structural investigations of mechanical properties of Al based rapidly solidified alloys. Mater. Des. 32, 4970–4979 (2011). https://doi.org/10.1016/j.matdes.2011.05.042

    Article  CAS  Google Scholar 

  17. M. Rajabi, A. Simchi, P. Davami, Microstructure and mechanical properties of Al-20Si-5Fe-2X (X = Cu, Ni, Cr) alloys produced by melt-spinning. Mater. Sci. Eng. A 492, 443–449 (2008). https://doi.org/10.1016/j.msea.2008.03.047

    Article  CAS  Google Scholar 

  18. M. Aghasibeig, H. Fredriksson, Laser cladding of a featureless iron-based alloy. Surf. Coat. Technol. 209, 32–37 (2012). https://doi.org/10.1016/j.surfcoat.2012.08.013

    Article  CAS  Google Scholar 

  19. P. He, G. Ma, H. Wang, L. Tang, M. Liu, Y. Bai, Y. Wang, J. Tang, D. He, H. Zhao, T. Yu, Influence of in-flight particle characteristics and substrate temperature on the formation mechanisms of hypereutectic Al-Si-Cu coatings prepared by supersonic atmospheric plasma spraying. J. Mater. Sci. Technol. 87, 216–233 (2021). https://doi.org/10.1016/j.jmst.2021.01.048

    Article  CAS  Google Scholar 

  20. G. Zimmermann, C. Pickmann, E. Schaberger-Zimmermann, In-situ X-ray investigation of growth behavior of primary silicon particles and aluminum dendrites during solidification of a hypereutectic Al-Si-Cu alloy. J. Cryst. Growth 585, 126589 (2022). https://doi.org/10.1016/j.jcrysgro.2022.126589

    Article  CAS  Google Scholar 

  21. J. Wang, Z. Guo, J.L. Song, W.X. Hu, J.C. Li, S.M. Xiong, On the growth mechanism of the primary silicon particle in a hypereutectic Al-20 wt%Si alloy using synchrotron X-ray tomography. Mater. Des. 137, 176–183 (2018). https://doi.org/10.1016/j.matdes.2017.09.062

    Article  CAS  Google Scholar 

  22. Z. Aimin, M. Weimin, Z. Zisheng, J. Chunmei, Z. Xueyou, Effects of cooling rate on solidification microstructures and wear resistance of hypereutectic Al-Si alloy. Chin. J. Nonferrous Met. 11, 827–833 (2001). https://doi.org/10.19476/j.ysxb.1004.0609.2001.05.019

    Article  Google Scholar 

  23. R. Anandkumar, A. Almeida, R. Colaço, R. Vilar, V. Ocelik, J.T.M. De Hosson, Microstructure and wear studies of laser clad Al-Si/SiC(p) composite coatings. Surf. Coat. Technol. 201, 9497–9505 (2007). https://doi.org/10.1016/j.surfcoat.2007.04.003

    Article  CAS  Google Scholar 

  24. R. Anandkumar, A. Almeida, R. Vilar, Wear behavior of Al–12Si/TiB2 coatings produced by laser cladding. Surf. Coat. Technol. 205, 3824–3832 (2011). https://doi.org/10.1016/j.surfcoat.2011.01.048

    Article  CAS  Google Scholar 

  25. N. Akcamlı, B. Senyurt, H. Gokce, D. Agaogulları, Powder metallurgical fabrication of graphene reinforced near-eutectic Al-Si matrix composites: Microstructural, mechanical and electrochemical characterization. Eng. Sci. Technol. Int. J. 31, 101052 (2022). https://doi.org/10.1016/j.jestch.2021.08.009

    Article  Google Scholar 

  26. O. Carvalho, M. Buciumeanu, S. Madeira, D. Soares, F.S. Silva, G. Miranda, Dry sliding wear behaviour of AlSi–CNTs–SiCp hybrid composites. Tribol. Int. 90, 148–156 (2015). https://doi.org/10.1016/j.triboint.2015.04.031

    Article  CAS  Google Scholar 

  27. S. Madeira, G. Miranda, V.H. Carneiro, D. Soares, F.S. Silva, O. Carvalho, The effect of SiCp size on high temperature damping capacity and dynamic Young’s modulus of hot-pressed AlSi–SiCp MMCs. Mater. Des. 93, 409–417 (2016). https://doi.org/10.1016/j.matdes.2015.12.147

    Article  CAS  Google Scholar 

  28. M.L. Rahaman, L. Zhang, An investigation into the friction and wear mechanisms of aluminium high silicon alloy under contact sliding. Wear 376–377, 940–946 (2017). https://doi.org/10.1016/j.wear.2016.10.026

    Article  CAS  Google Scholar 

  29. I. Simsek, D. Ozyurek, Investigation of the effects of Mg amount on microstructure and wear behavior of Al-Si-Mg alloys. Eng. Sci. Technol. 22, 370–375 (2019). https://doi.org/10.1016/j.jestch.2018.08.016

    Article  Google Scholar 

  30. W.Y. Li, C. Zhang, X.P. Guo, G. Zhang, H.L. Liao, C. Coddet, Deposition characteristics of Al–12Si alloy coating fabricated by cold spraying with relatively large powder particles. Appl. Surf. Sci. 253, 7124–7130 (2007). https://doi.org/10.1016/j.apsusc.2007.02.142

    Article  CAS  Google Scholar 

  31. M. Yandouzi, P. Richer, B. Jodoin, SiC particulate reinforced Al–12Si alloy composite coatings produced by the pulsed gas dynamic spray process: microstructure and properties. Surf. Coat. Technol. 203, 3260–3270 (2009). https://doi.org/10.1016/j.surfcoat.2009.04.001

    Article  CAS  Google Scholar 

  32. A. Aversa, M. Lorusso, G. Cattano, D. Manfredi, F. Calignano, E.P. Ambrosio, S. Biamino, P. Fino, M. Lombardi, M. Pavese, A study of the microstructure and the mechanical properties of an Al Si Ni alloy produced via selective laser melting. J. Alloys Compd. 695, 1470–1478 (2017). https://doi.org/10.1016/j.jallcom.2016.10.285

    Article  CAS  Google Scholar 

  33. M. Fousova, D. Dvorsky, A. Michalcova, D. Vojtech, Changes in the microstructure and mechanical properties of additively manufactured AlSi10Mg alloy after exposure to elevated temperatures. Mater Charact 137, 119–126 (2018). https://doi.org/10.1016/j.matchar.2018.01.028

    Article  CAS  Google Scholar 

  34. N. Kang, P. Coddet, C. Chen, Y. Wang, H. Liao, C. Coddet, Microstructure and wear behavior of in-situ hypereutectic Al–high Si alloys produced by selective laser melting. Mater. Des. 99, 120–126 (2016). https://doi.org/10.1016/j.matdes.2016.03.053

    Article  CAS  Google Scholar 

  35. P. He, L. Tang, G. Ma, H. Wang, S. Chen, M. Liu, S. Ding, Y. Bai, J. Tang, D. He, Understanding the formation mechanism of supersonic atmospheric plasma sprayed in-situ hypereutectic Al-25wt%Si coating with nanostructured coupled eutectic: From powder, in-flight droplet, splat to coating. Appl. Surf. Sci. 530, 147246 (2020). https://doi.org/10.1016/j.apsusc.2020.147246

    Article  CAS  Google Scholar 

  36. T.-s Dong, M. Liu, Y. Feng, G.-l Li, X.-b Li, Microstructure and properties of a wear resistant Al-25Si-4Cu-1Mg coating prepared by supersonic plasma spraying. Int. J. Miner. Metall. Mater. 27, 1287–1294 (2020). https://doi.org/10.1007/s12613-019-1950-2

    Article  CAS  Google Scholar 

  37. B. Jalalahmadi, F. Sadeghi, N.K. Arakere, N. Raje, T.S. Slack, A review of rolling contact fatigue. J. Tribol. 131, 041403 (2009). https://doi.org/10.1115/1.3209132

    Article  Google Scholar 

  38. P. Thasleem, D. Kumar, M.L. Joy, B. Kuriachen, Effect of heat treatment and electric discharge alloying on the lubricated tribology of Al-Si alloy fabricated by selective laser melting. Wear 494, 204244 (2022). https://doi.org/10.1016/j.wear.2022.204244

    Article  CAS  Google Scholar 

  39. H.B. Xiong, L.L. Zheng, L. Li, A. Vaidya, Melting and oxidation behavior of in-flight particles in plasma spray process. Int. J. Heat Mass Transf. 48, 5121–5133 (2005). https://doi.org/10.1016/j.ijheatmasstransfer.2005.07.019

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (52075543, 52130509 and 52122508).

Author information

Authors and Affiliations

Authors

Contributions

HX: Writing—original draft data curation formal analysis. GM: Writing—review and editing funding acquisition. PH: Writing—review and editing conceptualization. GL: Writing—review and editing. YS: Writing—review and editing. XZ: Writing—review and editing. ML: Writing—review and editing. HZ: Writing—review and editing. HW: Writing—review and editing.

Corresponding authors

Correspondence to Guo-zheng Ma or Guo-lu Li.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest..

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Hb., Ma, Gz., He, Pf. et al. Structural characteristics and tribological properties of an ultrafine-grained Al–40Si–5Fe coating prepared by supersonic plasma spraying. Journal of Materials Research 39, 220–230 (2024). https://doi.org/10.1557/s43578-023-01213-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01213-4

Keywords

Navigation