Abstract
This review sought to evaluate how the materials present in the membranes and the operational conditions influence the hydrogen permeation performance. Using the PRISMA methodology, scientific articles published since 2017 related to the subject were selected using five keywords. A table was elaborated with materials that composed the membranes and the operational conditions applied in the permeation of hydrogen gas in the found articles. By analyzing the papers, palladium and palladium alloys with an intermediate ceramic layer to compose the membrane support are highlighted. All the analyzed permeation conditions affect the selectivity and permeability, especially the temperature, whose elevation favors permeability but may cause defects in the membrane. With this, this study aims to facilitate the retrieval of original works published in recent years related to the subject, particularly for comparing hydrogen permeation results based on the material the researcher intends to use in preparing their membrane. With this, this study aims to facilitate the retrieval of original works published in recent years related to the subject, particularly for comparing hydrogen permeation results based on the material the researcher intends to use in preparing their membrane.
Graphical abstract
Similar content being viewed by others
Data availability
All data generated or analyzed during this study are included in this published article.
Code availability
Not available.
References
M.G. Rosmaninho, F.C.C. Moura, L.R. Souza, R.K. Nogueira, G.M. Gomes, J.S. Nascimento, M.C. Pereira, J.D. Fabris, J.D. Ardisson, M.S. Nazzarro, K. Sapag, M.H. Araújo, R.M. Lago, Investigation of iron oxide reduction by ethanol as a potential route to produce hydrogen. Appl. Catal. B 115–116, 45 (2012)
V. Spallina, G. Matturro, C. Ruocco, E. Meloni, V. Palma, E. Fernandez, J. Melendez, A.D. Pacheco Tanaka, J.L. Viviente Sole, M. van Sint Annaland, F. Gallucci, Direct route from ethanol to pure hydrogen through autothermal reforming in a membrane reactor: experimental demonstration, reactor modelling and design. Energy 143, 666 (2018)
F.A. da Silva, I. Dancini-Pontes, M. DeSouza, N.R.C. Fernandes, Kinetics of ethanol steam reforming over Cu–Ni/NbxOy catalyst. React. Kinet. Mech. Catal. 122(1), 557 (2017)
M.R. Rahimpour, M. Bayat, Production of ultrapure hydrogen via utilizing fluidization concept from coupling of methanol and benzene synthesis in a hydrogen-permselective membrane reactor. Int. J. Hydrogen Energy 36(11), 6616 (2011)
Z.W. Dunbar, D. Chu, Thin palladium membranes supported on microstructured nickel for purification of reformate gases. J. Power. Sources 217, 47 (2012)
M. Serra, C. Ocampo-Martinez, M. Li, J. Llorca, Model predictive control for ethanol steam reformers with membrane separation. Int. J. Hydrogen Energy 42(4), 1949 (2017)
C.P. Girotto, S.D. de Campos, É.A. de Campos, Chrysotile asbestos treated with phosphoric acid as an adsorbent for ammonia nitrogen. Heliyon 6(2), e03397 (2020)
K. Sutherland, G. Chase, Filters and filtration handbook, 5th edn. (Elsevier, Amsterdam, 2008)
E. Fernandez, A. Helmi, J.A. Medrano, K. Coenen, A. Arratibel, J. Melendez, N.C.A. de Nooijer, V. Spallina, J.L. Viviente, J. Zuñiga, M. van Sint Annaland, D.A. Pacheco Tanaka, F. Gallucci, Palladium based membranes and membrane reactors for hydrogen production and purification: an overview of research activities at Tecnalia and TU/e. Int. J. Hydrogen Energy 42(19), 13763 (2017)
A. Qiao, K. Zhang, Y. Tian, L. Xie, H. Luo, Y.S. Lin, Y. Li, Hydrogen separation through palladium-copper membranes on porous stainless steel with sol-gel derived ceria as diffusion barrier. Fuel 89(6), 1274 (2010)
R.P. Nippes, P.D. Macruz, G.N. da Silva, M.H.N. Olsen Scaliante, A critical review on environmental presence of pharmaceutical drugs tested for the covid-19 treatment. Process Saf. Environ. Prot. 152, 568 (2021)
R.P. Nippes, P.D. Macruz, A.D. Gomes, C.P. Girotto, M.H.N.O. Scaliante, M. de Souza, Removal of reactive blue 250 dye from aqueous medium using Cu/Fe catalyst supported on Nb2O5 through oxidation with H2O2. React. Kinet. Mech. Catal. 135(5), 2697 (2022)
D. Alique, D. Martinez-Diaz, R. Sanz, J.A. Calles, Review of supported Pd-based membranes preparation by electroless plating for ultra-pure hydrogen production. Membranes (Basel) 8, 5 (2018)
M.A. Murmura, M. Patrascu, M.C. Annesini, V. Palma, C. Ruocco, M. Sheintuch, Directing selectivity of ethanol steam reforming in membrane reactors. Int. J. Hydrogen Energy 40(17), 5837 (2015)
J. Tong, Y. Matsumura, H. Suda, K. Haraya, Thin and dense Pd/CeO2/MPSS composite membrane for hydrogen separation and steam reforming of methane. Sep. Purif. Technol. 46(1–2), 1 (2005)
S. Tosti, A. Basile, R. Borelli, F. Borgognoni, S. Castelli, M. Fabbricino, F. Gallucci, C. Licusati, Ethanol steam reforming kinetics of a Pd–Ag membrane reactor. Int. J. Hydrogen Energy 34(11), 4747 (2009)
S. Yun, S. Ted Oyama, Correlations in palladium membranes for hydrogen separation: a review. J. Memb. Sci. 375, 28 (2011)
T.L. Ward, T. Dao, Model of hydrogen permeation behavior in palladium membranes. J. Memb. Sci. 153, 211 (1999)
R. Dittmeyer, V. Höllein, K. Daub, Membrane reactors for hydrogenation and dehydrogenation processes based on supported palladium. J. Mol. Catal. A: Chem. 173, 135 (2001)
P.P. Mardilovich, Y. She, Y.H. Ma, M.-H. Rei, Defect-free palladium membranes on porous stainless-steel support. Aiche J. 44, 310 (1998)
J.A. Calles, R. Sanz, D. Alique, L. Furones, Thermal stability and effect of typical water gas shift reactant composition on H2 permeability through a Pd-YSZ-PSS composite membrane. Int. J. Hydrogen Energy 39(3), 1398 (2014)
M. Pujari, A. Agarwal, R. Uppaluri, A. Verma, Combinatorial electroless plating characteristics for dense Pd-PSS composite membrane fabrication. Mater. Manuf. Process. 31(1), 6 (2016)
A. Gouveia Gil, M.H.M. Reis, D. Chadwick, Z. Wu, K. Li, A highly permeable hollow fibre substrate for Pd/Al2O3 composite membranes in hydrogen permeation. Int. J. Hydrogen Energy 40(8), 3249 (2015)
S.K. Ryi, S.W. Lee, D.K. Oh, B.S. Seo, J.W. Park, J.S. Park, D.W. Lee, S.S. Kim, Electroless plating of Pd after shielding the bottom of planar porous stainless steel for a highly stable hydrogen selective membrane. J. Memb. Sci. 467, 93 (2014)
J. Shu, B. Grandjean, E. Ghali, S. Kaliaguine, Simultaneous deposition of Pd and Ag on porous stainless steel by electroless plating. Appl. Catal. A: Gen. 96, 104 (1993)
F. Touyeras, J.Y. Hihn, S. Delalande, R. Viennet, M.L. Doche, Ultrasound influence on the activation step before electroless coating. Ultrason. Sonochem. 10, 363–368 (2003)
E. David, J. Kopac, Devlopment of palladium/ceramic membranes for hydrogen separation. Int. J. Hydrogen Energy 36, 4498 (2011)
M.L. Bosko, A. Dalla Fontana, A. Tarditi, L. Cornaglia, Advances in hydrogen selective membranes based on palladium ternary alloys. Int. J. Hydrogen Energy 46, 15572 (2021)
N. Pal, M. Agarwal, Advances in materials process and separation mechanism of the membrane towards hydrogen separation. Int. J. Hydrogen Energy 46, 27062 (2021)
D. Moher, A. Liberati, J. Tetzlaff, D.G. Altman, Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ (Online) 339, 332 (2009)
B. Chen, J. Liu, H. Li, T. Xu, J. Zhang, J. Yu, H. Xu, Long-term stability against H2S poisoning on Pd composite membranes by thin zeolite coatings. Ind. Eng. Chem. Res. 58(16), 6429 (2019)
W.H. Chen, S.W. Lin, C.Y. Chen, Y.H. Chi, Y.L. Lin, Impact of vacuum operation on hydrogen permeation through a palladium membrane tube. Int. J. Hydrogen Energy 44(28), 14434 (2019)
C. Li, H. Xu, C. Bao, S. Hou, Palladium membrane coated with zeolitic armor anchored by diffusion-piling to enhance performance. ACS Appl. Nano Mater. 2(6), 3377 (2019)
M.M. Rahman, M.S. Islam, M.A. Rahman, H. Tun, V. Deshmane, T. Hossain, S. Ilias, Evaluation and characterization of Pd–Ag composite membrane fabricated by surfactant induced electroless plating (SIEP) for hydrogen separation. Sep. Sci. Technol. 54(13), 2084 (2019)
L. Wei, M. Ma, Y. Lu, D. Wang, S. Zhang, Q. Wang, Surface modification of macroporous Al2O3 tubes with carbon-doped TiO2 intermediate layer and preparation of highly permeable palladium composite membranes for hydrogen separation. Sep. Sci. Technol. 55(5), 980 (2020)
Y. Park, J. Cha, H.T. Oh, T. Lee, S.H. Lee, M.G. Park, H. Jeong, Y. Kim, H. Sohn, S.W. Nam, J. Han, C.W. Yoon, Y.S. Jo, A catalytic composite membrane reactor system for hydrogen production from ammonia using steam as a sweep gas. J. Memb. Sci. 614, 118483 (2020)
J.L. Viviente, J. Meléndez, D.A. Pacheco Tanaka, F. Gallucci, V. Spallina, G. Manzolini, S. Foresti, V. Palma, C. Ruocco, L. Roses, Advanced m-CHP fuel cell system based on a novel bio-ethanol fluidized bed membrane reformer. Int. J. Hydrogen Energy 42(19), 13970 (2017)
A. Arratibel, A. Pacheco Tanaka, I. Laso, M. van Sint Annaland, F. Gallucci, Development of Pd-based double-skinned membranes for hydrogen production in fluidized bed membrane reactors. J. Memb. Sci. 550, 536 (2018)
Y.S. Jo, J. Cha, C.H. Lee, H. Jeong, C.W. Yoon, S.W. Nam, J. Han, A viable membrane reactor option for sustainable hydrogen production from ammonia. J. Power. Sources 400, 518 (2018)
Y. Huang, Q. Liu, X. Jin, W. Ding, X. Hu, H. Li, Coating the porous Al2O3 substrate with a natural mineral of Nontronite-15A for fabrication of hydrogen-permeable palladium membranes. Int. J. Hydrogen Energy 45(12), 7412 (2020)
N. Prasetya, Z. Wu, A.G. Gil, K. Li, Compact hollow fibre reactors for efficient methane conversion. J. Eur. Ceram. Soc. 37(16), 5281 (2017)
M. Nordio, J. Melendez, M. van Sint Annaland, D.A. Pacheco Tanaka, M. Llosa Tanco, F. Gallucci, Comparison between carbon molecular sieve and Pd–Ag membranes in H2–CH4 separation at high pressure. Int. J. Hydrogen Energy 45(53), 28876 (2020)
D. Martinez-Diaz, D. Martínez del Monte, E. García-Rojas, D. Alique, J.A. Calles, R. Sanz, Comprehensive permeation analysis and mechanical resistance of electroless pore-plated Pd-membranes with ordered mesoporous ceria as intermediate layer. Sep. Purif. Technol. 258, 118066 (2021)
J. Yu, J. Zhang, C. Bao, Z. Zhang, H. Li, H. Xu, Controllable growth of defect-free zeolite protective layer on the surface of Pd membrane for chemical stability enhancement. Microporous Mesoporous Mater. 244, 119 (2017)
Y. Park, Y. Kwak, S. Yu, A. Badakhsh, Y.J. Lee, H. Jeong, Y. Kim, H. Sohn, S.W. Nam, C.W. Yoon, J. Han, Y.S. Jo, Degradation mechanism of a Pd/Ta composite membrane: catalytic surface fouling with inter-diffusion. J. Alloys Compd. 854, 157196 (2021)
A.D. Fontana, B. Faroldi, L.M. Cornaglia, A.M. Tarditi, Development of catalytic membranes over PdAu selective films for hydrogen production through the dry reforming of methane. Mol. Catal. 481, 100643 (2020)
J.Y. Han, C.H. Kim, H. Lim, K.Y. Lee, S.K. Ryi, Diffusion barrier coating using a newly developed blowing coating method for a thermally stable Pd membrane deposited on porous stainless-steel support. Int. J. Hydrogen Energy 42(17), 12310 (2017)
C. Zhao, H. Xu, A. Goldbach, Duplex Pd/ceramic/Pd composite membrane for sweep gas-enhanced CO2 capture. J. Memb. Sci. 563, 388 (2018)
I. Contardi, L. Cornaglia, A.M. Tarditi, Effect of the porous stainless steel substrate shape on the ZrO2 deposition by vacuum assisted dip-coating. Int. J. Hydrogen Energy 42(12), 7986 (2017)
H. Jia, J. Zhang, J. Yu, X. Yang, X. Sheng, H. Xu, C. Sun, W. Shen, A. Goldbach, Efficient H2 production via membrane-assisted ethanol steam reforming over Ir/CeO2 catalyst. Int. J. Hydrogen Energy 44(45), 24733 (2019)
G. Lee, J. Easa, R. Jin, A. Booth, C.P. O’Brien, Enhancing the surface sensitivity of in-situ/operando characterization of palladium membranes through polarization modulation and synthesis of optically smooth palladium thin films. J. Memb. Sci. 637, 119605 (2021)
A. Giaconia, G. Iaquaniello, G. Caputo, B. Morico, A. Salladini, L. Turchetti, G. Monteleone, A. Giannini, E. Palo, Experimental validation of a pilot membrane reactor for hydrogen production by solar steam reforming of methane at maximum 550 °C using molten salts as heat transfer fluid. Int. J. Hydrogen Energy 45(58), 33088 (2020)
A. Iulianelli, V. Palma, G. Bagnato, C. Ruocco, Y. Huang, N.T. Veziroğlu, A. Basile, From bioethanol exploitation to high grade hydrogen generation: steam reforming promoted by a Co–Pt catalyst in a Pd-based membrane reactor. Renew. Energy 119, 834 (2018)
S.T.B. Lundin, J.O. Law, N.S. Patki, C.A. Wolden, J.D. Way, Glass frit sealing method for macroscopic defects in Pd-based composite membranes with application in catalytic membrane reactors. Sep. Purif. Technol. 172, 68 (2017)
V. Cechetto, L. Di Felice, J.A. Medrano, C. Makhloufi, J. Zuniga, F. Gallucci, H2 production via ammonia decomposition in a catalytic membrane reactor. Fuel Process. Technol. 216, 106772 (2021)
C. Zhao, A. Goldbach, H. Xu, Low-temperature stability of body-centered cubic PdCu membranes. J. Memb. Sci. 542, 60 (2017)
H. Jia, H. Xu, X. Sheng, X. Yang, W. Shen, A. Goldbach, High-temperature ethanol steam reforming in PdCu membrane reactor. J. Memb. Sci. 605, 118083 (2020)
H. Jia, A. Goldbach, C. Zhao, G.R. Castro, C. Sun, H. Xu, Permeation and in situ XRD studies on PdCuAu membranes under H2. J. Memb. Sci. 529, 142 (2017)
J. Liu, S. Bellini, N.C.A. de Nooijer, Y. Sun, D.A. Pacheco Tanaka, C. Tang, H. Li, F. Gallucci, A. Caravella, Hydrogen permeation and stability in ultra-thin Pd–Ru supported membranes. Int. J. Hydrogen Energy 45(12), 7455 (2020)
W.H. Chen, J. Escalante, Y.H. Chi, Y.L. Lin, Hydrogen permeation enhancement in a Pd membrane tube system under various vacuum degrees. Int. J. Hydrogen Energy 45(12), 7401 (2020)
S. Kim, S.W. Yun, B. Lee, J. Heo, K. Kim, Y.T. Kim, H. Lim, Steam reforming of methanol for ultra-pure H2 production in a membrane reactor: techno-economic analysis. Int. J. Hydrogen Energy 44, 2330 (2019)
B. Anzelmo, J. Wilcox, S. Liguori, Hydrogen production via natural gas steam reforming in a Pd–Au membrane reactor. Investigation of reaction temperature and GHSV effects and long-term stability. J. Memb. Sci. 565, 25 (2018)
Y.W. Budhi, W. Suganda, H.K. Irawan, E. Restiawaty, M. Miyamoto, S. Uemiya, N. Nishiyama, M. van Sint Annaland, Hydrogen separation from mixed gas (H2, N2) using Pd/Al2O3 membrane under forced unsteady state operations. Int. J. Hydrogen Energy 45(16), 9821 (2020)
V.N. Alimov, I.V. Bobylev, A.O. Busnyuk, M.E. Notkin, E.Y. Peredistov, A.I. Livshits, Hydrogen transport through the tubular membranes of V-Pd alloys: permeation, diffusion, surface processes and WGS mixture test of membrane assembly. J. Memb. Sci. 549, 428 (2018)
C.L.M. de Silva, S.R.F.L. Ribeiro, N.M. Terra, V.L. Cardoso, M.H.M. Reis, Improved hydrogen permeation through thin Pd/Al2O3 composite membranes with graphene oxide as intermediate layer. Int. J. Hydrogen Energy 45(43), 22990 (2020)
N. de Nooijer, J.D. Sanchez, J. Melendez, E. Fernandez, D.A. Pacheco Tanaka, M. van Sint Annaland, F. Gallucci, Influence of H2S on the hydrogen flux of thin-film Pd–Ag–Au membranes. Int. J. Hydrogen Energy 45(12), 7303 (2020)
M. Maroño, G. Alessandro, A. Morales, D. Martinez-Diaz, D. Alique, J.M. Sánchez, Influence of Si and Fe/Cr oxides as intermediate layers in the fabrication of supported Pd membranes. Sep. Purif. Technol. 234, 116091 (2020)
W.H. Chen, J. Escalante, Influence of vacuum degree on hydrogen permeation through a Pd membrane in different H2/N2 gas mixtures. Renew. Energy 155, 1245 (2020)
T.A. Peters, P.A. Carvalho, J.F. van Wees, J.P. Overbeek, E. Sagvolden, F.P.F. van Berkel, O.M. Løvvik, R. Bredesen, Leakage evolution and atomic-scale changes in Pd-based membranes induced by long-term hydrogen permeation. J. Memb. Sci. 563, 398 (2018)
H.Y. Do, C.H. Kim, J.Y. Han, H.S. Kim, S.K. Ryi, Low-temperature proton-exchange membrane fuel cell-grade hydrogen production by membrane reformer equipped with Pd-composite membrane and methanation catalyst on permeation stream. J. Memb. Sci. 634, 119373 (2021)
C. Zhao, B. Sun, J. Jiang, W. Xu, H2 purification process with double layer bcc-PdCu alloy membrane at ambient temperature. Int. J. Hydrogen Energy 45(35), 17540 (2020)
S. Bellini, X. Liang, X. Li, F. Gallucci, A. Caravella, Non-ideal hydrogen permeation through V-alloy membranes. J. Memb. Sci. 564, 456 (2018)
N. de Nooijer, F. Gallucci, E. Pellizzari, J. Melendez, D.A. Pacheco Tanaka, G. Manzolini, M. van Sint Annaland, On concentration polarisation in a fluidized bed membrane reactor for biogas steam reforming: modelling and experimental validation. Chem. Eng. J. 348, 232 (2018)
D. Martinez-Diaz, D. Alique, J.A. Calles, R. Sanz, Pd-thickness reduction in electroless pore-plated membranes by using doped-ceria as interlayer. Int. J. Hydrogen Energy 45(12), 7278 (2020)
A. Dalla Fontana, L. Cornaglia, A. Tarditi, PdAu and Pd–Au–Ag composite membranes with reduced film thickness using YSZ as a stainless-steel support modifier. J. Alloys Compd. 877, 160184 (2021)
S.T.B. Lundin, N.S. Patki, Z. Zhang, T.F. Fuerst, C.A. Wolden, J.D. Way, PdAu/YSZ composite hydrogen separation membranes with enhanced stability in the presence of CO. J. Memb. Sci. 611, 118371 (2020)
B. Castro-Dominguez, I.P. Mardilovich, R. Ma, N.K. Kazantzis, A.G. Dixon, Y.H. Ma, Performance of a pilot-scale multitube membrane module under coal-derived syngas for hydrogen production and separation. J. Memb. Sci. 523, 515 (2017)
H. Jia, P. Wu, G. Zeng, E. Salas-Colera, A. Serrano, G.R. Castro, H. Xu, C. Sun, A. Goldbach, High-temperature stability of Pd alloy membranes containing Cu and Au. J. Memb. Sci. 544, 151 (2017)
D. Sanz-Villanueva, D. Alique, A.J. Vizcaíno, R. Sanz, J.A. Calles, Pre-activation of SBA-15 intermediate barriers with Pd nuclei to increase thermal and mechanical resistances of pore-plated Pd-membranes. Int. J. Hydrogen Energy 46(38), 20198 (2021)
S. Jamshidi, A.A. Babaluo, Preparation and evaluation of Pd membrane on supports activated by PEG embedded Pd nanoparticles for ATR membrane reactor. Chem. Eng. Process. Process Intensif. 147, 107736 (2020)
A.D. Kiadehi, M. Taghizadeh, Fabrication, characterization, and application of palladium composite membrane on porous stainless steel substrate with NaY zeolite as an intermediate layer for hydrogen purification. Int. J. Hydrogen Energy 44(5), 2889 (2019)
K. Kian, S. Liguori, H. Pilorgé, J.M. Crawford, M.A. Carreon, J.L. Martin, R.L. Grimm, J. Wilcox, Prospects of CO2 capture via 13X for low-carbon hydrogen production using a Pd-based metallic membrane reactor. Chem. Eng. J. 407, 127224 (2021)
K. Sato, M. Miyakawa, M. Nishioka, Rapid control of hydrogen permeation in Pd membrane reactor by magnetic-field-induced heating under microwave irradiation. Int. J. Hydrogen Energy 46(38), 20213 (2021)
C. Zhao, B. Sun, J. Jiang, W. Xu, Safe direct synthesis of H2O2 within the explosion limit of H2 enabled by low-temperature stable bcc-PdCu alloy membrane. J. Loss Prev. Process Ind. 65, 104146 (2020)
G. Adduci, D. Martinez-Diaz, D. Sanz-Villanueva, A. Caravella, J.A. Calles, R. Sanz, D. Alique, Stability of electroless pore-plated Pd-membranes in acetic acid steam membrane-reformers for ultra-pure hydrogen production. Fuel Process. Technol. 212, 106619 (2021)
E. Tosto, D. Alique, D. Martinez-Diaz, R. Sanz, J.A. Calles, A. Caravella, J.A. Medrano, F. Gallucci, Stability of pore-plated membranes for hydrogen production in fluidized-bed membrane reactors. Int. J. Hydrogen Energy 45(12), 7374 (2020)
F.S. Alrashed, S.N. Paglieri, Z.S. Alismail, H. Khalaf, A. Harale, J.P. Overbeek, H.M. van Veen, A.S. Hakeem, Steam reforming of simulated pre-reformed naphtha in a PdAu membrane reactor. Int. J. Hydrogen Energy 46(42), 21939 (2021)
B. Zhu, C.H. Tang, H.Y. Xu, D.S. Su, J. Zhang, H. Li, Surface activation inspires high performance of ultra-thin Pd membrane for hydrogen separation. J. Memb. Sci. 526, 138 (2017)
A. Dalla Fontana, Y. Martínez Galeano, L. Cornaglia, A.M. Tarditi, Synthesis of Pt-zeolite coated palladium alloys as catalytic membranes for hydrogen production. Int. J. Hydrogen Energy 46(2), 2255 (2021)
E. Tosto, D. Martinez-Diaz, R. Sanz, G. Azzato, J.A. Calles, J.A. Medrano, E. Fernandez, D.A. Pacheco Tanaka, F. Gallucci, D. Alique, A. Caravella, Systematic experimental assessment of concentration polarization and inhibition in Pd-based membranes for hydrogen purification. Fuel Process. Technol. 213, 106661 (2021)
E. Acha, Y.C. van Delft, J.F. Cambra, P.L. Arias, Thin PdCu membrane for hydrogen purification from in-situ produced methane reforming complex mixtures containing H2S. Chem. Eng. Sci. 176, 429 (2018)
C.H. Lee, Y.S. Jo, Y. Park, H. Jeong, Y. Kim, H. Sohn, C.W. Yoon, S.W. Nam, H.C. Ham, J. Han, Unconventional hydrogen permeation behavior of Pd/BCC composite membranes and significance of surface reaction kinetics. J. Memb. Sci. 595, 117506 (2020)
C. Zhao, Y. Liu, H. Zhu, J. Feng, H. Jiang, F. An, Y. Jin, W. Xu, Z. Yang, B. Sun, Hydrophobically modified Pd membrane for the efficient purification of hydrogen in light alcohols steam reforming process. J. Memb. Sci. 647(5), 120326 (2022)
S. Agnolin, J. Melendez, L. Di Felice, F. Gallucci, Surface roughness improvement of Hastelloy × tubular filters for H2 selective supported Pd–Ag alloy membranes preparation. Int. J. Hydrogen Energy 47(66), 28505 (2022)
V. Cechetto, L. Di Felice, R. Gutierrez Martinez, A. Arratibel Plazaola, F. Gallucci, Ultra-pure hydrogen production via ammonia decomposition in a catalytic membrane reactor. Int. J. Hydrogen Energy 47(49), 21220 (2022)
Y. Ji, H. Sun, X. Wang, T. Yang, Z. Xue, C. Li, N. Yang, J. Sunarso, S. Liu, Vacuum-assisted continuous flow electroless plating approach for high performance Pd membrane deposition on ceramic hollow fiber lumen. J. Memb. Sci. 645, 120207 (2022)
D. Sanz-Villanueva, D. Alique, A.J. Vizcaíno, J.A. Calles, R. Sanz, On the long-term stability of Pd-membranes with TiO2 intermediate layers for H2 purification. Int. J. Hydrogen Energy 47(21), 11402 (2022)
S. Lim, E. Magnone, M.C. Shin, J.W. Kang, K.Y. Lee, C.H. Jeong, J.H. Park, Simple scalable approach to advanced membrane module design and hydrogen separation performance using twelve replaceable palladium-coated Al2O3 hollow fibre membranes. J. Ind. Eng. Chem. 114, 391 (2022)
T.W. Kim, E.H. Lee, S. Byun, D.W. Seo, H.J. Hwang, H.C. Yoon, H. Kim, S.K. Ryi, Highly selective Pd composite membrane on porous metal support for high-purity hydrogen production through effective ammonia decomposition. Energy 260, 125209 (2022)
A.S. Augustine, I.P. Mardilovich, N.K. Kazantzis, Y. Hua Ma, Durability of PSS-supported Pd-membranes under mixed gas and water-gas shift conditions. J. Memb. Sci. 415–416, 213 (2012)
J.A. Calles, R. Sanz, D. Alique, Influence of the type of siliceous material used as intermediate layer in the preparation of hydrogen selective palladium composite membranes over a porous stainless steel support. Int. J. Hydrogen Energy 37(7), 6030 (2012)
R. Sanz, J.A. Calles, D. Alique, L. Furones, S. Ordóñez, P. Marín, P. Corengia, E. Fernandez, Preparation, testing and modelling of a hydrogen selective Pd/YSZ/SS composite membrane. Int. J. Hydrogen Energy 36(24), 15783 (2011)
D. Alique, M. Imperatore, R. Sanz, J.A. Calles, M. Giacinti Baschetti, Hydrogen permeation in composite Pd-membranes prepared by conventional electroless plating and electroless pore-plating alternatives over ceramic and metallic supports. Int. J. Hydrogen Energy 41(42), 19430 (2016)
D. Martinez-Diaz, R. Sanz, J.A. Calles, D. Alique, H2 permeation increase of electroless pore-plated Pd/PSS membranes with CeO2 intermediate barriers. Sep. Purif. Technol. 216, 16 (2019)
Y.H. Chi, P.S. Yen, M.S. Jeng, S.T. Ko, T.C. Lee, Preparation of thin Pd membrane on porous stainless steel tubes modified by a two-step method. Int. J. Hydrogen Energy 35(12), 6303 (2010)
K. O. Henseling: Bronze, Eisen, Stahl: Die Bedeutung Der Metalle in Der Geschichte, 1st ed. (1981)
W. von Glöckner, W. Jansen, R.G. Weißenhorn, H. Bouma, L. Ludo Brandt, B. Flintjer, C.H. Hamann, P. Haupt, R. Holze, K. Höner, J. Jansen, B. Kaminski, M. Kenn, O. Kownatzki, I. Melle, Handbuch Der Experimentellen Chemie (1994)
A. Tarditi, C. Gerboni, L. Cornaglia, PdAu membranes supported on top of vacuum-assisted ZrO2-modified porous stainless steel substrates. J. Memb. Sci. 428, 1 (2013)
H. Gao, J.Y.S. Lin, Y. Li, B. Zhang, Electroless plating synthesis, characterization and permeation properties of Pd–Cu membranes supported on ZrO2 modified porous stainless steel. J. Memb. Sci. 265(1–2), 142 (2005)
W. Callister, Ciência e Engenharia Dos Materiais: Uma Introdução, 5th edn. (Grupo Gen-LTC, 2002)
A. Arratibel, J.A. Medrano, J. Melendez, D.A. Pacheco Tanaka, M. van Sint Annaland, F. Gallucci, Attrition-resistant membranes for fluidized-bed membrane reactors: double-skin membranes. J. Memb. Sci. 563, 419 (2018)
Y. Huang, R. Dittmeyer, Preparation of thin palladium membranes on a porous support with rough surface. J. Memb. Sci. 302(1–2), 160 (2007)
A. Iulianelli, A. Basile, Hydrogen production from ethanol via inorganic membrane reactors technology: a review. Catal. Sci. Technol. 1, 366 (2011)
C.H. Kim, J.Y. Han, S. Kim, B. Lee, H. Lim, K.Y. Lee, S.K. Ryi, Hydrogen production by steam methane reforming in a membrane reactor equipped with a Pd composite membrane deposited on a porous stainless steel. Int. J. Hydrogen Energy 43(15), 7684 (2018)
P. Pinacci, M. Broglia, C. Valli, G. Capannelli, A. Comite, Evaluation of the water gas shift reaction in a palladium membrane reactor. Catal. Today 156(3–4), 165 (2010)
D. Martinez-Diaz, P. Leo, R. Sanz, A. Carrero, J.A. Calles, D. Alique, Life cycle assessment of H2-selective Pd membranes fabricated by electroless pore-plating. J. Clean. Prod. 316, 128229 (2021)
Y.S. Cheng, K.L. Yeung, Effects of electroless plating chemistry on the synthesis of palladium membranes. J. Memb. Sci. 182, 195 (2001)
J. Boon, J.A.Z. Pieterse, F.P.F. van Berkel, Y.C. van Delft, M. van Sint Annaland, Hydrogen permeation through palladium membranes and inhibition by carbon monoxide, carbon dioxide, and steam. J. Memb. Sci. 496, 344 (2015)
S.K. Gade, M.K. Keeling, A.P. Davidson, O. Hatlevik, J.D. Way, Palladium-ruthenium membranes for hydrogen separation fabricated by electroless co-deposition. Int. J. Hydrogen Energy 34(15), 6484 (2009)
F. Braun, A.M. Tarditi, J.B. Miller, L.M. Cornaglia, Pd-based binary and ternary alloy membranes: morphological and perm-selective characterization in the presence of H2S. J. Memb. Sci. 450, 299 (2014)
K. Zhang, J.D. Way, Palladium-copper membranes for hydrogen separation. Sep. Purif. Technol. 186, 39 (2017)
S.A.R.K. Deshmukh, S. Heinrich, L. Mörl, M. van Sint Annaland, J.A.M. Kuipers, Membrane assisted fluidized bed reactors: potentials and hurdles. Chem. Eng. Sci. 62(1–2), 416 (2007)
M.R. Rahimpour, F. Samimi, A. Babapoor, T. Tohidian, S. Mohebi, Palladium membranes applications in reaction systems for hydrogen separation and purification: a review. Chem. Eng. Process. 121, 24 (2017)
F. Gallucci, E. Fernandez, P. Corengia, M. van Sint Annaland, Recent advances on membranes and membrane reactors for hydrogen production. Chem. Eng. Sci. 92, 40 (2013)
A. Fick, Ueber diffusion. Annalen der Physik Chemie 170(1), 59 (1855)
L. Wei, J. Yu, Y. Huang, Silver coating on porous stainless steel substrate and preparation of H2-permeable palladium membranes. Int. J. Hydrogen Energy 38, 10833–10838 (2013)
D. Halliday, R. Resnick, J. Walker, Fundamentals of physics, 8th edn. (Wiley, Hoboken, 2007)
B.D. Morreale, M.V. Ciocco, B.H. Howard, R.P. Killmeyer, A.V. Cugini, R.M. Enick, Effect of hydrogen-sulfide on the hydrogen permeance of palladium-copper alloys at elevated temperatures. J. Memb. Sci. 241(2), 219 (2004)
T. Hou, S. Zhang, Y. Chen, D. Wang, W. Cai, Hydrogen production from ethanol reforming: catalysts and reaction mechanism. Renew. Sustain. Energy Rev. 44, 132 (2015)
F.J. Keil, Modeling of process intensification, 1st edn. (Wiley-Vch, Hoboken, 2007)
R. Mallada, M. Menéndez, Inorganic membranes: synthesis, characterization and applications, 1st edn. (Elsevier, Amsterdam, 2008)
I. Dancini-Pontes: Influência de Parâmetros No Mecanismo Das Reações de Reforma Com Vapor d’água E Reforma Oxidativa Do Etanol Maringá, (2017)
I. Dancini-Pontes, N.R.C. Fernandes-Machado, M. De Souza, R.M. Pontes, Insights into ethanol decomposition over Pt: a DFT energy decomposition analysis for the reaction mechanism leading to C2H6 and CH4. Appl. Catal. A Gen. 491, 86 (2015)
K. Scott, Handbook of industrial membranes, 1st edn. (Elsevier Science, Amsterdam, 1995)
M. Mulder, Basic principles of membrane technology, 2nd edn. (Kluwer Academic, Dordrecht, 1996)
A.C. Habert, C.P. Borges, R. Nobrega, Processos de separação por membranas, 1st edn. (E-papers, New Delhi, 2006)
A. Basile, F. Gallucci, S. Tosti, Synthesis, characterization, and applications of palladium membranes. Membr. Sci. Technol. 13, 255 (2008)
S. Luo, D. Wang, T.B. Flanagan, Thermodynamics of hydrogen in fcc Pd–Au alloys. J. Phys. Chem. B 114(18), 6117 (2010)
N.S. Patki, S.T.B. Lundin, J.D. Way, Apparent activation energy for hydrogen permeation and its relation to the composition of homogeneous PdAu alloy thin-film membranes. Sep. Purif. Technol. 191, 370 (2018)
Funding
The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.
Author information
Authors and Affiliations
Contributions
All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by CPG, ADG, and PDM. The first draft of the manuscript was written by CPG, RPN, MS, and MTR and all authors commented on the previous versions of the manuscript. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors have no relevant financial or non-financial interests to disclose.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Girotto, C.P., Nippes, R.P., Macruz, P.D. et al. Effect of physicochemical properties on the performance of palladium-based composite membranes: A review. Journal of Materials Research 38, 4868–4891 (2023). https://doi.org/10.1557/s43578-023-01212-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/s43578-023-01212-5