Skip to main content
Log in

Effect of physicochemical properties on the performance of palladium-based composite membranes: A review

  • Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This review sought to evaluate how the materials present in the membranes and the operational conditions influence the hydrogen permeation performance. Using the PRISMA methodology, scientific articles published since 2017 related to the subject were selected using five keywords. A table was elaborated with materials that composed the membranes and the operational conditions applied in the permeation of hydrogen gas in the found articles. By analyzing the papers, palladium and palladium alloys with an intermediate ceramic layer to compose the membrane support are highlighted. All the analyzed permeation conditions affect the selectivity and permeability, especially the temperature, whose elevation favors permeability but may cause defects in the membrane. With this, this study aims to facilitate the retrieval of original works published in recent years related to the subject, particularly for comparing hydrogen permeation results based on the material the researcher intends to use in preparing their membrane. With this, this study aims to facilitate the retrieval of original works published in recent years related to the subject, particularly for comparing hydrogen permeation results based on the material the researcher intends to use in preparing their membrane.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

Code availability

Not available.

References

  1. M.G. Rosmaninho, F.C.C. Moura, L.R. Souza, R.K. Nogueira, G.M. Gomes, J.S. Nascimento, M.C. Pereira, J.D. Fabris, J.D. Ardisson, M.S. Nazzarro, K. Sapag, M.H. Araújo, R.M. Lago, Investigation of iron oxide reduction by ethanol as a potential route to produce hydrogen. Appl. Catal. B 115–116, 45 (2012)

    Article  Google Scholar 

  2. V. Spallina, G. Matturro, C. Ruocco, E. Meloni, V. Palma, E. Fernandez, J. Melendez, A.D. Pacheco Tanaka, J.L. Viviente Sole, M. van Sint Annaland, F. Gallucci, Direct route from ethanol to pure hydrogen through autothermal reforming in a membrane reactor: experimental demonstration, reactor modelling and design. Energy 143, 666 (2018)

    Article  CAS  Google Scholar 

  3. F.A. da Silva, I. Dancini-Pontes, M. DeSouza, N.R.C. Fernandes, Kinetics of ethanol steam reforming over Cu–Ni/NbxOy catalyst. React. Kinet. Mech. Catal. 122(1), 557 (2017)

    Article  Google Scholar 

  4. M.R. Rahimpour, M. Bayat, Production of ultrapure hydrogen via utilizing fluidization concept from coupling of methanol and benzene synthesis in a hydrogen-permselective membrane reactor. Int. J. Hydrogen Energy 36(11), 6616 (2011)

    Article  CAS  Google Scholar 

  5. Z.W. Dunbar, D. Chu, Thin palladium membranes supported on microstructured nickel for purification of reformate gases. J. Power. Sources 217, 47 (2012)

    Article  CAS  Google Scholar 

  6. M. Serra, C. Ocampo-Martinez, M. Li, J. Llorca, Model predictive control for ethanol steam reformers with membrane separation. Int. J. Hydrogen Energy 42(4), 1949 (2017)

    Article  CAS  Google Scholar 

  7. C.P. Girotto, S.D. de Campos, É.A. de Campos, Chrysotile asbestos treated with phosphoric acid as an adsorbent for ammonia nitrogen. Heliyon 6(2), e03397 (2020)

    Article  Google Scholar 

  8. K. Sutherland, G. Chase, Filters and filtration handbook, 5th edn. (Elsevier, Amsterdam, 2008)

    Google Scholar 

  9. E. Fernandez, A. Helmi, J.A. Medrano, K. Coenen, A. Arratibel, J. Melendez, N.C.A. de Nooijer, V. Spallina, J.L. Viviente, J. Zuñiga, M. van Sint Annaland, D.A. Pacheco Tanaka, F. Gallucci, Palladium based membranes and membrane reactors for hydrogen production and purification: an overview of research activities at Tecnalia and TU/e. Int. J. Hydrogen Energy 42(19), 13763 (2017)

    Article  CAS  Google Scholar 

  10. A. Qiao, K. Zhang, Y. Tian, L. Xie, H. Luo, Y.S. Lin, Y. Li, Hydrogen separation through palladium-copper membranes on porous stainless steel with sol-gel derived ceria as diffusion barrier. Fuel 89(6), 1274 (2010)

    Article  CAS  Google Scholar 

  11. R.P. Nippes, P.D. Macruz, G.N. da Silva, M.H.N. Olsen Scaliante, A critical review on environmental presence of pharmaceutical drugs tested for the covid-19 treatment. Process Saf. Environ. Prot. 152, 568 (2021)

    Article  CAS  Google Scholar 

  12. R.P. Nippes, P.D. Macruz, A.D. Gomes, C.P. Girotto, M.H.N.O. Scaliante, M. de Souza, Removal of reactive blue 250 dye from aqueous medium using Cu/Fe catalyst supported on Nb2O5 through oxidation with H2O2. React. Kinet. Mech. Catal. 135(5), 2697 (2022)

    Article  CAS  Google Scholar 

  13. D. Alique, D. Martinez-Diaz, R. Sanz, J.A. Calles, Review of supported Pd-based membranes preparation by electroless plating for ultra-pure hydrogen production. Membranes (Basel) 8, 5 (2018)

    Article  Google Scholar 

  14. M.A. Murmura, M. Patrascu, M.C. Annesini, V. Palma, C. Ruocco, M. Sheintuch, Directing selectivity of ethanol steam reforming in membrane reactors. Int. J. Hydrogen Energy 40(17), 5837 (2015)

    Article  CAS  Google Scholar 

  15. J. Tong, Y. Matsumura, H. Suda, K. Haraya, Thin and dense Pd/CeO2/MPSS composite membrane for hydrogen separation and steam reforming of methane. Sep. Purif. Technol. 46(1–2), 1 (2005)

    Article  CAS  Google Scholar 

  16. S. Tosti, A. Basile, R. Borelli, F. Borgognoni, S. Castelli, M. Fabbricino, F. Gallucci, C. Licusati, Ethanol steam reforming kinetics of a Pd–Ag membrane reactor. Int. J. Hydrogen Energy 34(11), 4747 (2009)

    Article  CAS  Google Scholar 

  17. S. Yun, S. Ted Oyama, Correlations in palladium membranes for hydrogen separation: a review. J. Memb. Sci. 375, 28 (2011)

    Article  CAS  Google Scholar 

  18. T.L. Ward, T. Dao, Model of hydrogen permeation behavior in palladium membranes. J. Memb. Sci. 153, 211 (1999)

    Article  CAS  Google Scholar 

  19. R. Dittmeyer, V. Höllein, K. Daub, Membrane reactors for hydrogenation and dehydrogenation processes based on supported palladium. J. Mol. Catal. A: Chem. 173, 135 (2001)

    Article  CAS  Google Scholar 

  20. P.P. Mardilovich, Y. She, Y.H. Ma, M.-H. Rei, Defect-free palladium membranes on porous stainless-steel support. Aiche J. 44, 310 (1998)

    Article  CAS  Google Scholar 

  21. J.A. Calles, R. Sanz, D. Alique, L. Furones, Thermal stability and effect of typical water gas shift reactant composition on H2 permeability through a Pd-YSZ-PSS composite membrane. Int. J. Hydrogen Energy 39(3), 1398 (2014)

    Article  CAS  Google Scholar 

  22. M. Pujari, A. Agarwal, R. Uppaluri, A. Verma, Combinatorial electroless plating characteristics for dense Pd-PSS composite membrane fabrication. Mater. Manuf. Process. 31(1), 6 (2016)

    Article  CAS  Google Scholar 

  23. A. Gouveia Gil, M.H.M. Reis, D. Chadwick, Z. Wu, K. Li, A highly permeable hollow fibre substrate for Pd/Al2O3 composite membranes in hydrogen permeation. Int. J. Hydrogen Energy 40(8), 3249 (2015)

    Article  CAS  Google Scholar 

  24. S.K. Ryi, S.W. Lee, D.K. Oh, B.S. Seo, J.W. Park, J.S. Park, D.W. Lee, S.S. Kim, Electroless plating of Pd after shielding the bottom of planar porous stainless steel for a highly stable hydrogen selective membrane. J. Memb. Sci. 467, 93 (2014)

    Article  CAS  Google Scholar 

  25. J. Shu, B. Grandjean, E. Ghali, S. Kaliaguine, Simultaneous deposition of Pd and Ag on porous stainless steel by electroless plating. Appl. Catal. A: Gen. 96, 104 (1993)

    Article  Google Scholar 

  26. F. Touyeras, J.Y. Hihn, S. Delalande, R. Viennet, M.L. Doche, Ultrasound influence on the activation step before electroless coating. Ultrason. Sonochem. 10, 363–368 (2003)

    Article  CAS  Google Scholar 

  27. E. David, J. Kopac, Devlopment of palladium/ceramic membranes for hydrogen separation. Int. J. Hydrogen Energy 36, 4498 (2011)

    Article  CAS  Google Scholar 

  28. M.L. Bosko, A. Dalla Fontana, A. Tarditi, L. Cornaglia, Advances in hydrogen selective membranes based on palladium ternary alloys. Int. J. Hydrogen Energy 46, 15572 (2021)

    Article  CAS  Google Scholar 

  29. N. Pal, M. Agarwal, Advances in materials process and separation mechanism of the membrane towards hydrogen separation. Int. J. Hydrogen Energy 46, 27062 (2021)

    Article  CAS  Google Scholar 

  30. D. Moher, A. Liberati, J. Tetzlaff, D.G. Altman, Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ (Online) 339, 332 (2009)

    Google Scholar 

  31. B. Chen, J. Liu, H. Li, T. Xu, J. Zhang, J. Yu, H. Xu, Long-term stability against H2S poisoning on Pd composite membranes by thin zeolite coatings. Ind. Eng. Chem. Res. 58(16), 6429 (2019)

    Article  CAS  Google Scholar 

  32. W.H. Chen, S.W. Lin, C.Y. Chen, Y.H. Chi, Y.L. Lin, Impact of vacuum operation on hydrogen permeation through a palladium membrane tube. Int. J. Hydrogen Energy 44(28), 14434 (2019)

    Article  CAS  Google Scholar 

  33. C. Li, H. Xu, C. Bao, S. Hou, Palladium membrane coated with zeolitic armor anchored by diffusion-piling to enhance performance. ACS Appl. Nano Mater. 2(6), 3377 (2019)

    Article  CAS  Google Scholar 

  34. M.M. Rahman, M.S. Islam, M.A. Rahman, H. Tun, V. Deshmane, T. Hossain, S. Ilias, Evaluation and characterization of Pd–Ag composite membrane fabricated by surfactant induced electroless plating (SIEP) for hydrogen separation. Sep. Sci. Technol. 54(13), 2084 (2019)

    Article  CAS  Google Scholar 

  35. L. Wei, M. Ma, Y. Lu, D. Wang, S. Zhang, Q. Wang, Surface modification of macroporous Al2O3 tubes with carbon-doped TiO2 intermediate layer and preparation of highly permeable palladium composite membranes for hydrogen separation. Sep. Sci. Technol. 55(5), 980 (2020)

    Article  CAS  Google Scholar 

  36. Y. Park, J. Cha, H.T. Oh, T. Lee, S.H. Lee, M.G. Park, H. Jeong, Y. Kim, H. Sohn, S.W. Nam, J. Han, C.W. Yoon, Y.S. Jo, A catalytic composite membrane reactor system for hydrogen production from ammonia using steam as a sweep gas. J. Memb. Sci. 614, 118483 (2020)

    Article  CAS  Google Scholar 

  37. J.L. Viviente, J. Meléndez, D.A. Pacheco Tanaka, F. Gallucci, V. Spallina, G. Manzolini, S. Foresti, V. Palma, C. Ruocco, L. Roses, Advanced m-CHP fuel cell system based on a novel bio-ethanol fluidized bed membrane reformer. Int. J. Hydrogen Energy 42(19), 13970 (2017)

    Article  CAS  Google Scholar 

  38. A. Arratibel, A. Pacheco Tanaka, I. Laso, M. van Sint Annaland, F. Gallucci, Development of Pd-based double-skinned membranes for hydrogen production in fluidized bed membrane reactors. J. Memb. Sci. 550, 536 (2018)

    Article  CAS  Google Scholar 

  39. Y.S. Jo, J. Cha, C.H. Lee, H. Jeong, C.W. Yoon, S.W. Nam, J. Han, A viable membrane reactor option for sustainable hydrogen production from ammonia. J. Power. Sources 400, 518 (2018)

    Article  CAS  Google Scholar 

  40. Y. Huang, Q. Liu, X. Jin, W. Ding, X. Hu, H. Li, Coating the porous Al2O3 substrate with a natural mineral of Nontronite-15A for fabrication of hydrogen-permeable palladium membranes. Int. J. Hydrogen Energy 45(12), 7412 (2020)

    Article  CAS  Google Scholar 

  41. N. Prasetya, Z. Wu, A.G. Gil, K. Li, Compact hollow fibre reactors for efficient methane conversion. J. Eur. Ceram. Soc. 37(16), 5281 (2017)

    Article  CAS  Google Scholar 

  42. M. Nordio, J. Melendez, M. van Sint Annaland, D.A. Pacheco Tanaka, M. Llosa Tanco, F. Gallucci, Comparison between carbon molecular sieve and Pd–Ag membranes in H2–CH4 separation at high pressure. Int. J. Hydrogen Energy 45(53), 28876 (2020)

    Article  CAS  Google Scholar 

  43. D. Martinez-Diaz, D. Martínez del Monte, E. García-Rojas, D. Alique, J.A. Calles, R. Sanz, Comprehensive permeation analysis and mechanical resistance of electroless pore-plated Pd-membranes with ordered mesoporous ceria as intermediate layer. Sep. Purif. Technol. 258, 118066 (2021)

    Article  CAS  Google Scholar 

  44. J. Yu, J. Zhang, C. Bao, Z. Zhang, H. Li, H. Xu, Controllable growth of defect-free zeolite protective layer on the surface of Pd membrane for chemical stability enhancement. Microporous Mesoporous Mater. 244, 119 (2017)

    Article  CAS  Google Scholar 

  45. Y. Park, Y. Kwak, S. Yu, A. Badakhsh, Y.J. Lee, H. Jeong, Y. Kim, H. Sohn, S.W. Nam, C.W. Yoon, J. Han, Y.S. Jo, Degradation mechanism of a Pd/Ta composite membrane: catalytic surface fouling with inter-diffusion. J. Alloys Compd. 854, 157196 (2021)

    Article  CAS  Google Scholar 

  46. A.D. Fontana, B. Faroldi, L.M. Cornaglia, A.M. Tarditi, Development of catalytic membranes over PdAu selective films for hydrogen production through the dry reforming of methane. Mol. Catal. 481, 100643 (2020)

    Article  CAS  Google Scholar 

  47. J.Y. Han, C.H. Kim, H. Lim, K.Y. Lee, S.K. Ryi, Diffusion barrier coating using a newly developed blowing coating method for a thermally stable Pd membrane deposited on porous stainless-steel support. Int. J. Hydrogen Energy 42(17), 12310 (2017)

    Article  CAS  Google Scholar 

  48. C. Zhao, H. Xu, A. Goldbach, Duplex Pd/ceramic/Pd composite membrane for sweep gas-enhanced CO2 capture. J. Memb. Sci. 563, 388 (2018)

    Article  CAS  Google Scholar 

  49. I. Contardi, L. Cornaglia, A.M. Tarditi, Effect of the porous stainless steel substrate shape on the ZrO2 deposition by vacuum assisted dip-coating. Int. J. Hydrogen Energy 42(12), 7986 (2017)

    Article  CAS  Google Scholar 

  50. H. Jia, J. Zhang, J. Yu, X. Yang, X. Sheng, H. Xu, C. Sun, W. Shen, A. Goldbach, Efficient H2 production via membrane-assisted ethanol steam reforming over Ir/CeO2 catalyst. Int. J. Hydrogen Energy 44(45), 24733 (2019)

    Article  CAS  Google Scholar 

  51. G. Lee, J. Easa, R. Jin, A. Booth, C.P. O’Brien, Enhancing the surface sensitivity of in-situ/operando characterization of palladium membranes through polarization modulation and synthesis of optically smooth palladium thin films. J. Memb. Sci. 637, 119605 (2021)

    Article  CAS  Google Scholar 

  52. A. Giaconia, G. Iaquaniello, G. Caputo, B. Morico, A. Salladini, L. Turchetti, G. Monteleone, A. Giannini, E. Palo, Experimental validation of a pilot membrane reactor for hydrogen production by solar steam reforming of methane at maximum 550 °C using molten salts as heat transfer fluid. Int. J. Hydrogen Energy 45(58), 33088 (2020)

    Article  CAS  Google Scholar 

  53. A. Iulianelli, V. Palma, G. Bagnato, C. Ruocco, Y. Huang, N.T. Veziroğlu, A. Basile, From bioethanol exploitation to high grade hydrogen generation: steam reforming promoted by a Co–Pt catalyst in a Pd-based membrane reactor. Renew. Energy 119, 834 (2018)

    Article  CAS  Google Scholar 

  54. S.T.B. Lundin, J.O. Law, N.S. Patki, C.A. Wolden, J.D. Way, Glass frit sealing method for macroscopic defects in Pd-based composite membranes with application in catalytic membrane reactors. Sep. Purif. Technol. 172, 68 (2017)

    Article  CAS  Google Scholar 

  55. V. Cechetto, L. Di Felice, J.A. Medrano, C. Makhloufi, J. Zuniga, F. Gallucci, H2 production via ammonia decomposition in a catalytic membrane reactor. Fuel Process. Technol. 216, 106772 (2021)

    Article  CAS  Google Scholar 

  56. C. Zhao, A. Goldbach, H. Xu, Low-temperature stability of body-centered cubic PdCu membranes. J. Memb. Sci. 542, 60 (2017)

    Article  CAS  Google Scholar 

  57. H. Jia, H. Xu, X. Sheng, X. Yang, W. Shen, A. Goldbach, High-temperature ethanol steam reforming in PdCu membrane reactor. J. Memb. Sci. 605, 118083 (2020)

    Article  CAS  Google Scholar 

  58. H. Jia, A. Goldbach, C. Zhao, G.R. Castro, C. Sun, H. Xu, Permeation and in situ XRD studies on PdCuAu membranes under H2. J. Memb. Sci. 529, 142 (2017)

    Article  CAS  Google Scholar 

  59. J. Liu, S. Bellini, N.C.A. de Nooijer, Y. Sun, D.A. Pacheco Tanaka, C. Tang, H. Li, F. Gallucci, A. Caravella, Hydrogen permeation and stability in ultra-thin Pd–Ru supported membranes. Int. J. Hydrogen Energy 45(12), 7455 (2020)

    Article  CAS  Google Scholar 

  60. W.H. Chen, J. Escalante, Y.H. Chi, Y.L. Lin, Hydrogen permeation enhancement in a Pd membrane tube system under various vacuum degrees. Int. J. Hydrogen Energy 45(12), 7401 (2020)

    Article  CAS  Google Scholar 

  61. S. Kim, S.W. Yun, B. Lee, J. Heo, K. Kim, Y.T. Kim, H. Lim, Steam reforming of methanol for ultra-pure H2 production in a membrane reactor: techno-economic analysis. Int. J. Hydrogen Energy 44, 2330 (2019)

    Article  CAS  Google Scholar 

  62. B. Anzelmo, J. Wilcox, S. Liguori, Hydrogen production via natural gas steam reforming in a Pd–Au membrane reactor. Investigation of reaction temperature and GHSV effects and long-term stability. J. Memb. Sci. 565, 25 (2018)

    Article  CAS  Google Scholar 

  63. Y.W. Budhi, W. Suganda, H.K. Irawan, E. Restiawaty, M. Miyamoto, S. Uemiya, N. Nishiyama, M. van Sint Annaland, Hydrogen separation from mixed gas (H2, N2) using Pd/Al2O3 membrane under forced unsteady state operations. Int. J. Hydrogen Energy 45(16), 9821 (2020)

    Article  CAS  Google Scholar 

  64. V.N. Alimov, I.V. Bobylev, A.O. Busnyuk, M.E. Notkin, E.Y. Peredistov, A.I. Livshits, Hydrogen transport through the tubular membranes of V-Pd alloys: permeation, diffusion, surface processes and WGS mixture test of membrane assembly. J. Memb. Sci. 549, 428 (2018)

    Article  CAS  Google Scholar 

  65. C.L.M. de Silva, S.R.F.L. Ribeiro, N.M. Terra, V.L. Cardoso, M.H.M. Reis, Improved hydrogen permeation through thin Pd/Al2O3 composite membranes with graphene oxide as intermediate layer. Int. J. Hydrogen Energy 45(43), 22990 (2020)

    Article  CAS  Google Scholar 

  66. N. de Nooijer, J.D. Sanchez, J. Melendez, E. Fernandez, D.A. Pacheco Tanaka, M. van Sint Annaland, F. Gallucci, Influence of H2S on the hydrogen flux of thin-film Pd–Ag–Au membranes. Int. J. Hydrogen Energy 45(12), 7303 (2020)

    Article  Google Scholar 

  67. M. Maroño, G. Alessandro, A. Morales, D. Martinez-Diaz, D. Alique, J.M. Sánchez, Influence of Si and Fe/Cr oxides as intermediate layers in the fabrication of supported Pd membranes. Sep. Purif. Technol. 234, 116091 (2020)

    Article  Google Scholar 

  68. W.H. Chen, J. Escalante, Influence of vacuum degree on hydrogen permeation through a Pd membrane in different H2/N2 gas mixtures. Renew. Energy 155, 1245 (2020)

    Article  CAS  Google Scholar 

  69. T.A. Peters, P.A. Carvalho, J.F. van Wees, J.P. Overbeek, E. Sagvolden, F.P.F. van Berkel, O.M. Løvvik, R. Bredesen, Leakage evolution and atomic-scale changes in Pd-based membranes induced by long-term hydrogen permeation. J. Memb. Sci. 563, 398 (2018)

    Article  CAS  Google Scholar 

  70. H.Y. Do, C.H. Kim, J.Y. Han, H.S. Kim, S.K. Ryi, Low-temperature proton-exchange membrane fuel cell-grade hydrogen production by membrane reformer equipped with Pd-composite membrane and methanation catalyst on permeation stream. J. Memb. Sci. 634, 119373 (2021)

    Article  CAS  Google Scholar 

  71. C. Zhao, B. Sun, J. Jiang, W. Xu, H2 purification process with double layer bcc-PdCu alloy membrane at ambient temperature. Int. J. Hydrogen Energy 45(35), 17540 (2020)

    Article  CAS  Google Scholar 

  72. S. Bellini, X. Liang, X. Li, F. Gallucci, A. Caravella, Non-ideal hydrogen permeation through V-alloy membranes. J. Memb. Sci. 564, 456 (2018)

    Article  CAS  Google Scholar 

  73. N. de Nooijer, F. Gallucci, E. Pellizzari, J. Melendez, D.A. Pacheco Tanaka, G. Manzolini, M. van Sint Annaland, On concentration polarisation in a fluidized bed membrane reactor for biogas steam reforming: modelling and experimental validation. Chem. Eng. J. 348, 232 (2018)

    Article  Google Scholar 

  74. D. Martinez-Diaz, D. Alique, J.A. Calles, R. Sanz, Pd-thickness reduction in electroless pore-plated membranes by using doped-ceria as interlayer. Int. J. Hydrogen Energy 45(12), 7278 (2020)

    Article  CAS  Google Scholar 

  75. A. Dalla Fontana, L. Cornaglia, A. Tarditi, PdAu and Pd–Au–Ag composite membranes with reduced film thickness using YSZ as a stainless-steel support modifier. J. Alloys Compd. 877, 160184 (2021)

    Article  CAS  Google Scholar 

  76. S.T.B. Lundin, N.S. Patki, Z. Zhang, T.F. Fuerst, C.A. Wolden, J.D. Way, PdAu/YSZ composite hydrogen separation membranes with enhanced stability in the presence of CO. J. Memb. Sci. 611, 118371 (2020)

    Article  CAS  Google Scholar 

  77. B. Castro-Dominguez, I.P. Mardilovich, R. Ma, N.K. Kazantzis, A.G. Dixon, Y.H. Ma, Performance of a pilot-scale multitube membrane module under coal-derived syngas for hydrogen production and separation. J. Memb. Sci. 523, 515 (2017)

    Article  CAS  Google Scholar 

  78. H. Jia, P. Wu, G. Zeng, E. Salas-Colera, A. Serrano, G.R. Castro, H. Xu, C. Sun, A. Goldbach, High-temperature stability of Pd alloy membranes containing Cu and Au. J. Memb. Sci. 544, 151 (2017)

    Article  CAS  Google Scholar 

  79. D. Sanz-Villanueva, D. Alique, A.J. Vizcaíno, R. Sanz, J.A. Calles, Pre-activation of SBA-15 intermediate barriers with Pd nuclei to increase thermal and mechanical resistances of pore-plated Pd-membranes. Int. J. Hydrogen Energy 46(38), 20198 (2021)

    Article  CAS  Google Scholar 

  80. S. Jamshidi, A.A. Babaluo, Preparation and evaluation of Pd membrane on supports activated by PEG embedded Pd nanoparticles for ATR membrane reactor. Chem. Eng. Process. Process Intensif. 147, 107736 (2020)

    Article  CAS  Google Scholar 

  81. A.D. Kiadehi, M. Taghizadeh, Fabrication, characterization, and application of palladium composite membrane on porous stainless steel substrate with NaY zeolite as an intermediate layer for hydrogen purification. Int. J. Hydrogen Energy 44(5), 2889 (2019)

    Article  CAS  Google Scholar 

  82. K. Kian, S. Liguori, H. Pilorgé, J.M. Crawford, M.A. Carreon, J.L. Martin, R.L. Grimm, J. Wilcox, Prospects of CO2 capture via 13X for low-carbon hydrogen production using a Pd-based metallic membrane reactor. Chem. Eng. J. 407, 127224 (2021)

    Article  CAS  Google Scholar 

  83. K. Sato, M. Miyakawa, M. Nishioka, Rapid control of hydrogen permeation in Pd membrane reactor by magnetic-field-induced heating under microwave irradiation. Int. J. Hydrogen Energy 46(38), 20213 (2021)

    Article  CAS  Google Scholar 

  84. C. Zhao, B. Sun, J. Jiang, W. Xu, Safe direct synthesis of H2O2 within the explosion limit of H2 enabled by low-temperature stable bcc-PdCu alloy membrane. J. Loss Prev. Process Ind. 65, 104146 (2020)

    Article  CAS  Google Scholar 

  85. G. Adduci, D. Martinez-Diaz, D. Sanz-Villanueva, A. Caravella, J.A. Calles, R. Sanz, D. Alique, Stability of electroless pore-plated Pd-membranes in acetic acid steam membrane-reformers for ultra-pure hydrogen production. Fuel Process. Technol. 212, 106619 (2021)

    Article  CAS  Google Scholar 

  86. E. Tosto, D. Alique, D. Martinez-Diaz, R. Sanz, J.A. Calles, A. Caravella, J.A. Medrano, F. Gallucci, Stability of pore-plated membranes for hydrogen production in fluidized-bed membrane reactors. Int. J. Hydrogen Energy 45(12), 7374 (2020)

    Article  CAS  Google Scholar 

  87. F.S. Alrashed, S.N. Paglieri, Z.S. Alismail, H. Khalaf, A. Harale, J.P. Overbeek, H.M. van Veen, A.S. Hakeem, Steam reforming of simulated pre-reformed naphtha in a PdAu membrane reactor. Int. J. Hydrogen Energy 46(42), 21939 (2021)

    Article  CAS  Google Scholar 

  88. B. Zhu, C.H. Tang, H.Y. Xu, D.S. Su, J. Zhang, H. Li, Surface activation inspires high performance of ultra-thin Pd membrane for hydrogen separation. J. Memb. Sci. 526, 138 (2017)

    Article  CAS  Google Scholar 

  89. A. Dalla Fontana, Y. Martínez Galeano, L. Cornaglia, A.M. Tarditi, Synthesis of Pt-zeolite coated palladium alloys as catalytic membranes for hydrogen production. Int. J. Hydrogen Energy 46(2), 2255 (2021)

    Article  CAS  Google Scholar 

  90. E. Tosto, D. Martinez-Diaz, R. Sanz, G. Azzato, J.A. Calles, J.A. Medrano, E. Fernandez, D.A. Pacheco Tanaka, F. Gallucci, D. Alique, A. Caravella, Systematic experimental assessment of concentration polarization and inhibition in Pd-based membranes for hydrogen purification. Fuel Process. Technol. 213, 106661 (2021)

    Article  CAS  Google Scholar 

  91. E. Acha, Y.C. van Delft, J.F. Cambra, P.L. Arias, Thin PdCu membrane for hydrogen purification from in-situ produced methane reforming complex mixtures containing H2S. Chem. Eng. Sci. 176, 429 (2018)

    Article  CAS  Google Scholar 

  92. C.H. Lee, Y.S. Jo, Y. Park, H. Jeong, Y. Kim, H. Sohn, C.W. Yoon, S.W. Nam, H.C. Ham, J. Han, Unconventional hydrogen permeation behavior of Pd/BCC composite membranes and significance of surface reaction kinetics. J. Memb. Sci. 595, 117506 (2020)

    Article  CAS  Google Scholar 

  93. C. Zhao, Y. Liu, H. Zhu, J. Feng, H. Jiang, F. An, Y. Jin, W. Xu, Z. Yang, B. Sun, Hydrophobically modified Pd membrane for the efficient purification of hydrogen in light alcohols steam reforming process. J. Memb. Sci. 647(5), 120326 (2022)

    Article  CAS  Google Scholar 

  94. S. Agnolin, J. Melendez, L. Di Felice, F. Gallucci, Surface roughness improvement of Hastelloy × tubular filters for H2 selective supported Pd–Ag alloy membranes preparation. Int. J. Hydrogen Energy 47(66), 28505 (2022)

    Article  CAS  Google Scholar 

  95. V. Cechetto, L. Di Felice, R. Gutierrez Martinez, A. Arratibel Plazaola, F. Gallucci, Ultra-pure hydrogen production via ammonia decomposition in a catalytic membrane reactor. Int. J. Hydrogen Energy 47(49), 21220 (2022)

    Article  CAS  Google Scholar 

  96. Y. Ji, H. Sun, X. Wang, T. Yang, Z. Xue, C. Li, N. Yang, J. Sunarso, S. Liu, Vacuum-assisted continuous flow electroless plating approach for high performance Pd membrane deposition on ceramic hollow fiber lumen. J. Memb. Sci. 645, 120207 (2022)

    Article  CAS  Google Scholar 

  97. D. Sanz-Villanueva, D. Alique, A.J. Vizcaíno, J.A. Calles, R. Sanz, On the long-term stability of Pd-membranes with TiO2 intermediate layers for H2 purification. Int. J. Hydrogen Energy 47(21), 11402 (2022)

    Article  CAS  Google Scholar 

  98. S. Lim, E. Magnone, M.C. Shin, J.W. Kang, K.Y. Lee, C.H. Jeong, J.H. Park, Simple scalable approach to advanced membrane module design and hydrogen separation performance using twelve replaceable palladium-coated Al2O3 hollow fibre membranes. J. Ind. Eng. Chem. 114, 391 (2022)

    Article  CAS  Google Scholar 

  99. T.W. Kim, E.H. Lee, S. Byun, D.W. Seo, H.J. Hwang, H.C. Yoon, H. Kim, S.K. Ryi, Highly selective Pd composite membrane on porous metal support for high-purity hydrogen production through effective ammonia decomposition. Energy 260, 125209 (2022)

    Article  CAS  Google Scholar 

  100. A.S. Augustine, I.P. Mardilovich, N.K. Kazantzis, Y. Hua Ma, Durability of PSS-supported Pd-membranes under mixed gas and water-gas shift conditions. J. Memb. Sci. 415–416, 213 (2012)

    Article  Google Scholar 

  101. J.A. Calles, R. Sanz, D. Alique, Influence of the type of siliceous material used as intermediate layer in the preparation of hydrogen selective palladium composite membranes over a porous stainless steel support. Int. J. Hydrogen Energy 37(7), 6030 (2012)

    Article  CAS  Google Scholar 

  102. R. Sanz, J.A. Calles, D. Alique, L. Furones, S. Ordóñez, P. Marín, P. Corengia, E. Fernandez, Preparation, testing and modelling of a hydrogen selective Pd/YSZ/SS composite membrane. Int. J. Hydrogen Energy 36(24), 15783 (2011)

    Article  CAS  Google Scholar 

  103. D. Alique, M. Imperatore, R. Sanz, J.A. Calles, M. Giacinti Baschetti, Hydrogen permeation in composite Pd-membranes prepared by conventional electroless plating and electroless pore-plating alternatives over ceramic and metallic supports. Int. J. Hydrogen Energy 41(42), 19430 (2016)

    Article  CAS  Google Scholar 

  104. D. Martinez-Diaz, R. Sanz, J.A. Calles, D. Alique, H2 permeation increase of electroless pore-plated Pd/PSS membranes with CeO2 intermediate barriers. Sep. Purif. Technol. 216, 16 (2019)

    Article  CAS  Google Scholar 

  105. Y.H. Chi, P.S. Yen, M.S. Jeng, S.T. Ko, T.C. Lee, Preparation of thin Pd membrane on porous stainless steel tubes modified by a two-step method. Int. J. Hydrogen Energy 35(12), 6303 (2010)

    Article  CAS  Google Scholar 

  106. K. O. Henseling: Bronze, Eisen, Stahl: Die Bedeutung Der Metalle in Der Geschichte, 1st ed. (1981)

  107. W. von Glöckner, W. Jansen, R.G. Weißenhorn, H. Bouma, L. Ludo Brandt, B. Flintjer, C.H. Hamann, P. Haupt, R. Holze, K. Höner, J. Jansen, B. Kaminski, M. Kenn, O. Kownatzki, I. Melle, Handbuch Der Experimentellen Chemie (1994)

  108. A. Tarditi, C. Gerboni, L. Cornaglia, PdAu membranes supported on top of vacuum-assisted ZrO2-modified porous stainless steel substrates. J. Memb. Sci. 428, 1 (2013)

    Article  CAS  Google Scholar 

  109. H. Gao, J.Y.S. Lin, Y. Li, B. Zhang, Electroless plating synthesis, characterization and permeation properties of Pd–Cu membranes supported on ZrO2 modified porous stainless steel. J. Memb. Sci. 265(1–2), 142 (2005)

    Article  CAS  Google Scholar 

  110. W. Callister, Ciência e Engenharia Dos Materiais: Uma Introdução, 5th edn. (Grupo Gen-LTC, 2002)

    Google Scholar 

  111. A. Arratibel, J.A. Medrano, J. Melendez, D.A. Pacheco Tanaka, M. van Sint Annaland, F. Gallucci, Attrition-resistant membranes for fluidized-bed membrane reactors: double-skin membranes. J. Memb. Sci. 563, 419 (2018)

    Article  CAS  Google Scholar 

  112. Y. Huang, R. Dittmeyer, Preparation of thin palladium membranes on a porous support with rough surface. J. Memb. Sci. 302(1–2), 160 (2007)

    Article  CAS  Google Scholar 

  113. A. Iulianelli, A. Basile, Hydrogen production from ethanol via inorganic membrane reactors technology: a review. Catal. Sci. Technol. 1, 366 (2011)

    Article  CAS  Google Scholar 

  114. C.H. Kim, J.Y. Han, S. Kim, B. Lee, H. Lim, K.Y. Lee, S.K. Ryi, Hydrogen production by steam methane reforming in a membrane reactor equipped with a Pd composite membrane deposited on a porous stainless steel. Int. J. Hydrogen Energy 43(15), 7684 (2018)

    Article  CAS  Google Scholar 

  115. P. Pinacci, M. Broglia, C. Valli, G. Capannelli, A. Comite, Evaluation of the water gas shift reaction in a palladium membrane reactor. Catal. Today 156(3–4), 165 (2010)

    Article  CAS  Google Scholar 

  116. D. Martinez-Diaz, P. Leo, R. Sanz, A. Carrero, J.A. Calles, D. Alique, Life cycle assessment of H2-selective Pd membranes fabricated by electroless pore-plating. J. Clean. Prod. 316, 128229 (2021)

    Article  CAS  Google Scholar 

  117. Y.S. Cheng, K.L. Yeung, Effects of electroless plating chemistry on the synthesis of palladium membranes. J. Memb. Sci. 182, 195 (2001)

    Article  CAS  Google Scholar 

  118. J. Boon, J.A.Z. Pieterse, F.P.F. van Berkel, Y.C. van Delft, M. van Sint Annaland, Hydrogen permeation through palladium membranes and inhibition by carbon monoxide, carbon dioxide, and steam. J. Memb. Sci. 496, 344 (2015)

    Article  CAS  Google Scholar 

  119. S.K. Gade, M.K. Keeling, A.P. Davidson, O. Hatlevik, J.D. Way, Palladium-ruthenium membranes for hydrogen separation fabricated by electroless co-deposition. Int. J. Hydrogen Energy 34(15), 6484 (2009)

    Article  CAS  Google Scholar 

  120. F. Braun, A.M. Tarditi, J.B. Miller, L.M. Cornaglia, Pd-based binary and ternary alloy membranes: morphological and perm-selective characterization in the presence of H2S. J. Memb. Sci. 450, 299 (2014)

    Article  CAS  Google Scholar 

  121. K. Zhang, J.D. Way, Palladium-copper membranes for hydrogen separation. Sep. Purif. Technol. 186, 39 (2017)

    Article  CAS  Google Scholar 

  122. S.A.R.K. Deshmukh, S. Heinrich, L. Mörl, M. van Sint Annaland, J.A.M. Kuipers, Membrane assisted fluidized bed reactors: potentials and hurdles. Chem. Eng. Sci. 62(1–2), 416 (2007)

    Article  CAS  Google Scholar 

  123. M.R. Rahimpour, F. Samimi, A. Babapoor, T. Tohidian, S. Mohebi, Palladium membranes applications in reaction systems for hydrogen separation and purification: a review. Chem. Eng. Process. 121, 24 (2017)

    Article  CAS  Google Scholar 

  124. F. Gallucci, E. Fernandez, P. Corengia, M. van Sint Annaland, Recent advances on membranes and membrane reactors for hydrogen production. Chem. Eng. Sci. 92, 40 (2013)

    Article  CAS  Google Scholar 

  125. A. Fick, Ueber diffusion. Annalen der Physik Chemie 170(1), 59 (1855)

    Article  Google Scholar 

  126. L. Wei, J. Yu, Y. Huang, Silver coating on porous stainless steel substrate and preparation of H2-permeable palladium membranes. Int. J. Hydrogen Energy 38, 10833–10838 (2013)

    Article  CAS  Google Scholar 

  127. D. Halliday, R. Resnick, J. Walker, Fundamentals of physics, 8th edn. (Wiley, Hoboken, 2007)

    Google Scholar 

  128. B.D. Morreale, M.V. Ciocco, B.H. Howard, R.P. Killmeyer, A.V. Cugini, R.M. Enick, Effect of hydrogen-sulfide on the hydrogen permeance of palladium-copper alloys at elevated temperatures. J. Memb. Sci. 241(2), 219 (2004)

    Article  CAS  Google Scholar 

  129. T. Hou, S. Zhang, Y. Chen, D. Wang, W. Cai, Hydrogen production from ethanol reforming: catalysts and reaction mechanism. Renew. Sustain. Energy Rev. 44, 132 (2015)

    Article  CAS  Google Scholar 

  130. F.J. Keil, Modeling of process intensification, 1st edn. (Wiley-Vch, Hoboken, 2007)

    Book  Google Scholar 

  131. R. Mallada, M. Menéndez, Inorganic membranes: synthesis, characterization and applications, 1st edn. (Elsevier, Amsterdam, 2008)

    Google Scholar 

  132. I. Dancini-Pontes: Influência de Parâmetros No Mecanismo Das Reações de Reforma Com Vapor d’água E Reforma Oxidativa Do Etanol Maringá, (2017)

  133. I. Dancini-Pontes, N.R.C. Fernandes-Machado, M. De Souza, R.M. Pontes, Insights into ethanol decomposition over Pt: a DFT energy decomposition analysis for the reaction mechanism leading to C2H6 and CH4. Appl. Catal. A Gen. 491, 86 (2015)

    Article  CAS  Google Scholar 

  134. K. Scott, Handbook of industrial membranes, 1st edn. (Elsevier Science, Amsterdam, 1995)

    Google Scholar 

  135. M. Mulder, Basic principles of membrane technology, 2nd edn. (Kluwer Academic, Dordrecht, 1996)

    Book  Google Scholar 

  136. A.C. Habert, C.P. Borges, R. Nobrega, Processos de separação por membranas, 1st edn. (E-papers, New Delhi, 2006)

    Google Scholar 

  137. A. Basile, F. Gallucci, S. Tosti, Synthesis, characterization, and applications of palladium membranes. Membr. Sci. Technol. 13, 255 (2008)

    Article  CAS  Google Scholar 

  138. S. Luo, D. Wang, T.B. Flanagan, Thermodynamics of hydrogen in fcc Pd–Au alloys. J. Phys. Chem. B 114(18), 6117 (2010)

    Article  CAS  Google Scholar 

  139. N.S. Patki, S.T.B. Lundin, J.D. Way, Apparent activation energy for hydrogen permeation and its relation to the composition of homogeneous PdAu alloy thin-film membranes. Sep. Purif. Technol. 191, 370 (2018)

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by CPG, ADG, and PDM. The first draft of the manuscript was written by CPG, RPN, MS, and MTR and all authors commented on the previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Camila Pereira Girotto.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Girotto, C.P., Nippes, R.P., Macruz, P.D. et al. Effect of physicochemical properties on the performance of palladium-based composite membranes: A review. Journal of Materials Research 38, 4868–4891 (2023). https://doi.org/10.1557/s43578-023-01212-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01212-5

Keywords

Navigation