Skip to main content

Advertisement

Log in

Fibroin reinforced, strontium-doped calcium phosphate silicate cements for bone tissue engineering applications

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Calcium phosphate silicate cements (CPSCs) have been developed to overcome problems like high acidity due to presence of brushite and high temperatures evolving as polymethyl methacrylate (PMMA) cements cure at surgery site. However, CPSCs with good handling and injectability have not been successfully produced. Here, we aimed to develop a biocompatible and osteoconductive bone cement composed of strontium (Sr)-doped tri-calcium silicates (C3S), monocalcium monophosphate and silk fibroin (SF). C3S powders were mixed with monocalcium monophosphate, and SF to obtain injectable CPSC. Physical, mechanical and biological characterization studies revealed that SF presence minimized alkalinity, increased rate of weight loss, porosity and elasticity but decreased maximum yield strength. The in vitro cell culture studies showed that all CPSCs were biocompatible. CPSC-Sr2-2% SF group performed the best in terms of osteogenic differentiation. These results suggest that CPSCs hold promise as bone cement however, in vivo studies should be conducted.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author, [AT], upon reasonable request.

References

  1. R. Vaishya, M. Chauhan, A. Vaish, Bone cement. J. Clin. Orthop. Trauma 4(4), 157–163 (2013)

    Article  Google Scholar 

  2. D.R. Paul, S.P. Sukhmeet, D. Ara, J.D. Liam, What is the risk of death or severe harm due to bone cement implantation syndrome among patients undergoing hip hemiarthroplasty for fractured neck of femur? A patient safety surveillance study. BMJ Open 4(6), e004853 (2014)

    Article  Google Scholar 

  3. K. Hurle, J.M. Oliveira, R.L. Reis, S. Pina, F. Goetz-Neunhoeffer, Ion-doped Brushite cements for bone regeneration. Acta Biomater. 123, 51–71 (2021)

    Article  CAS  Google Scholar 

  4. J. Engstrand, C. Persson, H. Engqvist, The effect of composition on mechanical properties of brushite cements. J. Mech. Behav. Biomed. Mater. 29, 81–90 (2014)

    Article  CAS  Google Scholar 

  5. Z. Huan, J. Chang, Novel bioactive composite bone cements based on the β-tricalcium phosphate–monocalcium phosphate monohydrate composite cement system. Acta Biomater. 5(4), 1253–1264 (2009)

    Article  CAS  Google Scholar 

  6. Q. Shen, J. Sun, J. Wu, C. Liu, F. Chen, An in vitro investigation of the mechanical–chemical and biological properties of calcium phosphate/calcium silicate/bismutite cement for dental pulp capping. J. Biomed. Mater. Res. B Appl. Biomater. 94B(1), 141–148 (2010)

    Article  CAS  Google Scholar 

  7. W. Yuan, X. He, J. Zhang, Y. Chen, T. Gong, Y. Zhu, Calcium phosphate silicate and calcium silicate cements suppressing osteoclasts activity through cytokine regulation. J. Nanosci. Nanotechnol. 18(10), 6799–6804 (2018)

    Article  CAS  Google Scholar 

  8. S. Lv, T. Qu, H. Al-Ward, L. Mu, H. Qiu, Y. Zhang, Influence of monocalcium phosphate on the properties of bioactive magnesium phosphate bone cement for bone regeneration. Materials 15(6), 2293 (2022)

    Article  CAS  Google Scholar 

  9. M.-Y. Shie, S.-J. Ding, H.-C. Chang, The role of silicon in osteoblast-like cell proliferation and apoptosis. Acta Biomater. 7(6), 2604–2614 (2011)

    Article  CAS  Google Scholar 

  10. W. Götz, E. Tobiasch, S. Witzleben, M. Schulze, Effects of silicon compounds on biomineralization, osteogenesis, and hard tissue formation. Pharmaceutics (2019). https://doi.org/10.3390/pharmaceutics11030117

    Article  Google Scholar 

  11. J.C. Almeida, A. Wacha, P.S. Gomes, L.C. Alves, M.H.V. Fernandes, I.M.M. Salvado, M.H.R. Fernandes, A biocompatible hybrid material with simultaneous calcium and strontium release capability for bone tissue repair. Mater. Sci. Eng. C 62, 429–438 (2016)

    Article  CAS  Google Scholar 

  12. X. Yu, X. Wang, D. Li, R. Sheng, Y. Qian, R. Zhu, X. Wang, K. Lin, Mechanically reinforced injectable bioactive nanocomposite hydrogels for in-situ bone regeneration. Chem. Eng. J. 433, 132799 (2022)

    Article  CAS  Google Scholar 

  13. J. Han, P. Wan, Y. Sun, Z. Liu, X. Fan, L. Tan, K. Yang, Fabrication and evaluation of a bioactive Sr–Ca–P contained micro-arc oxidation coating on magnesium strontium alloy for bone repair application. J. Mater. Sci. Technol. 32(3), 233–244 (2016)

    Article  Google Scholar 

  14. S. Li, X. Pu, X. Chen, X. Liao, Z. Huang, G. Yin, A novel bi-phase Sr-doped magnesium phosphate/calcium silicate composite scaffold and its osteogenesis promoting effect. Ceram. Int. 44(14), 16237–16245 (2018)

    Article  CAS  Google Scholar 

  15. X. Liu, Y. Sun, J. Shen, H.S. Min, J. Xu, Y. Chai, Strontium doped mesoporous silica nanoparticles accelerate osteogenesis and angiogenesis in distraction osteogenesis by activation of Wnt pathway. Nanomed. Nanotechnol. Biol. Med. 41, 102496 (2022)

    Article  CAS  Google Scholar 

  16. C.-C. Chen, W.-C. Wang, S.-J. Ding, In vitro physiochemical properties of a biomimetic gelatin/chitosan oligosaccharide/calcium silicate cement. J. Biomed. Mater. Res. B Appl. Biomater. 95B(2), 456–465 (2010)

    Article  CAS  Google Scholar 

  17. N. Ribeiro, M. Reis, L. Figueiredo, A. Pimenta, L.F. Santos, A.C. Branco, A.P. Alves de Matos, M. Salema-Oom, A. Almeida, M.F.C. Pereira, R. Colaço, A.P. Serro, Improvement of a commercial calcium phosphate bone cement by means of drug delivery and increased injectability. Ceram. Int. 48(22), 33361–33372 (2022)

    Article  CAS  Google Scholar 

  18. C. Tang, Z. Dang, T. Lu, J. Ye, A novel anti-washout curing solution of calcium phosphate cement prepared via irradiation polymerization. J. Mater. Chem. B 11(31), 7410–7423 (2023)

    Article  CAS  Google Scholar 

  19. A.Z. Alshemary, S. Bilgin, G. Işık, A. Motameni, A. Tezcaner, Z. Evis, Biomechanical evaluation of an injectable alginate/dicalcium phosphate cement composites for bone tissue engineering. J. Mech. Behav. Biomed. Mater. 118, 104439 (2021)

    Article  CAS  Google Scholar 

  20. J. Liu, J. Li, J. Ye, Properties and cytocompatibility of anti-washout calcium phosphate cement by introducing locust bean gum. J. Mater. Sci. Technol. 32(10), 1021–1026 (2016)

    Article  CAS  Google Scholar 

  21. A.E. Thurber, F.G. Omenetto, D.L. Kaplan, In vivo bioresponses to silk proteins. Biomaterials 71, 145–157 (2015)

    Article  CAS  Google Scholar 

  22. J.C. Moses, M. Dey, K.B. Devi, M. Roy, S.K. Nandi, B.B. Mandal, Synergistic effects of silicon/zinc doped Brushite and silk scaffolding in augmenting the osteogenic and angiogenic potential of composite biomimetic bone grafts. ACS Biomater. Sci. Eng. 5(3), 1462–1475 (2019)

    Article  CAS  Google Scholar 

  23. B.S. Lee, H.P. Lin, J.C. Chan, W.C. Wang, P.H. Hung, Y.H. Tsai, Y.L. Lee, A novel sol-gel-derived calcium silicate cement with short setting time for application in endodontic repair of perforations. Int. J. Nanomed. 13, 261–271 (2018)

    Article  CAS  Google Scholar 

  24. J. Kohout, P. Koutník, A. Soukup, Preparation, manufacture and properties of new β-belite cement. IOP Conf. Ser.: Mater. Sci. Eng. 1039(1), 012002 (2021)

    Article  CAS  Google Scholar 

  25. J. Zhang, H. Zhou, K. Yang, Y. Yuan, C. Liu, RhBMP-2-loaded calcium silicate/calcium phosphate cement scaffold with hierarchically porous structure for enhanced bone tissue regeneration. Biomaterials 34(37), 9381–9392 (2013)

    Article  CAS  Google Scholar 

  26. M. Dziadek, B. Zagrajczuk, E. Menaszek, A. Wegrzynowicz, J. Pawlik, K. Cholewa-Kowalska, Gel-derived SiO2–CaO–P2O5 bioactive glasses and glass-ceramics modified by SrO addition. Ceram. Int. 42(5), 5842–5857 (2016)

    Article  CAS  Google Scholar 

  27. B. Subia, S. Chandra, S. Talukdar, S.C. Kundu, Folate conjugated silk fibroin nanocarriers for targeted drug delivery. Integr. Biol. 6(2), 203–214 (2014)

    Article  CAS  Google Scholar 

  28. M.A. Saghiri, J. Orangi, A. Asatourian, J.L. Gutmann, F. Garcia-Godoy, M. Lotfi, N. Sheibani, Calcium silicate-based cements and functional impacts of various constituents. Dent. Mater. J. 36(1), 8–18 (2017)

    Article  CAS  Google Scholar 

  29. W.-C. Liu, C.-C. Hu, Y.-Y. Tseng, R. Sakthivel, K.-S. Fan, A.-N. Wang, Y.-M. Wang, R.-J. Chung, Study on strontium doped tricalcium silicate synthesized through sol-gel process. Mater. Sci. Eng. C 108, 110431 (2020)

    Article  CAS  Google Scholar 

  30. L. Medvecky, M. Giretova, R. Stulajterova, L. Luptakova, T. Sopcak, V. Girman, Osteogenic potential and properties of injectable silk fibroin/tetracalcium phosphate/monetite composite powder biocement systems. J. Biomed. Mater. Res. B Appl. Biomater. 110(3), 668–678 (2022)

    Article  CAS  Google Scholar 

  31. X. Lian, R. Xu, S. Liu, Z. Wang, B. Niu, D. Huang, Y. Wei, L. Zhao, The preparation and study on properties of calcium sulfate bone cement combined tuning silk fibroin nanofibers and vancomycin-loaded silk fibroin microspheres. J. Biomed. Mater. Res. B Appl. Biomater. 110(3), 564–572 (2022)

    Article  CAS  Google Scholar 

  32. L. Yu, T. Gao, W. Li, J. Yang, Y. Liu, Y. Zhao, P. He, X. Li, W. Guo, Z. Fan, H. Dai, Carboxymethyl chitosan-alginate enhances bone repair effects of magnesium phosphate bone cement by activating the FAK-Wnt pathway. Bioact. Mater. 20, 598–609 (2023)

    CAS  Google Scholar 

  33. P. Wang, B. Pi, J.-N. Wang, X.-S. Zhu, H.-L. Yang, Preparation and properties of calcium sulfate bone cement incorporated with silk fibroin and Sema3A-loaded chitosan microspheres. Front. Mater. Sci. 9(1), 51–65 (2015)

    Article  Google Scholar 

  34. L. Schröter, F. Kaiser, S. Stein, U. Gbureck, A. Ignatius, Biological and mechanical performance and degradation characteristics of calcium phosphate cements in large animals and humans. Acta Biomater. 117, 1–20 (2020)

    Article  Google Scholar 

  35. Y. Zhang, X. Cui, S. Zhao, H. Wang, M.N. Rahaman, Z. Liu, W. Huang, C. Zhang, Evaluation of injectable strontium-containing borate bioactive glass cement with enhanced osteogenic capacity in a critical-sized rabbit femoral condyle defect model. ACS Appl. Mater. Interfaces 7(4), 2393–2403 (2015)

    Article  CAS  Google Scholar 

  36. S. Li, L. Zhang, C. Liu, J. Kim, K. Su, T. Chen, L. Zhao, X. Lu, H. Zhang, Y. Cui, X. Cui, F. Yuan, H. Pan, Spontaneous immunomodulation and regulation of angiogenesis and osteogenesis by Sr/Cu-borosilicate glass (BSG) bone cement to repair critical bone defects. Bioact. Mater. 23, 101–117 (2023)

    CAS  Google Scholar 

  37. C.-H. Fang, Y.-W. Lin, J.-S. Sun, F.-H. Lin, The chitosan/tri-calcium phosphate bio-composite bone cement promotes better osteo-integration: an in vitro and in vivo study. J. Orthop. Surg. Res. 14(1), 162 (2019)

    Article  Google Scholar 

  38. X. Song, A. Díaz-Cuenca, Sol-gel synthesis of endodontic cements: post-synthesis treatment to improve setting performance and bioactivity. Materials (2022). https://doi.org/10.3390/ma15176051

    Article  Google Scholar 

  39. R. Choudhary, S. Koppala, S. Swamiappan, Bioactivity studies of calcium magnesium silicate prepared from eggshell waste by sol–gel combustion synthesis. J. Asian Ceram. Soc. 3(2), 173–177 (2015)

    Article  Google Scholar 

  40. Y. Pu, Y. Huang, S. Qi, C. Chen, H.J. Seo, In situ hydroxyapatite nanofiber growth on calcium borate silicate ceramics in SBF and its structural characteristics. Mater. Sci. Eng. C 55, 126–130 (2015)

    Article  CAS  Google Scholar 

  41. X. Lu, J. Kolzow, R.R. Chen, J. Du, Effect of solution condition on hydroxyapatite formation in evaluating bioactivity of B2O3 containing 45S5 bioactive glasses. Bioact. Mater. 4, 207–214 (2019)

    Google Scholar 

  42. R. Faridi-Majidi, N. Nezafati, M. Pazouki, S. Hesaraki, The effect of synthesis parameters on morphology and diameter of electrospun hydroxyapatite nanofibers. J. Aust. Ceram. Soc. 53(1), 225–233 (2017)

    Article  CAS  Google Scholar 

  43. Y.M. Sahin, Z. Orman, S. Yucel, In vitro studies of α-TCP and β-TCP produced from Clinocardium ciliatum seashells. J. Aust. Ceram. Soc. 56(2), 477–488 (2020)

    Article  CAS  Google Scholar 

  44. I.G. Beşkardeş, M. Gümüşderelioğlu, Biomimetic apatite-coated PCL scaffolds: effect of surface nanotopography on cellular functions. J. Bioact. Compat. Polym. 24(6), 507–524 (2009)

    Article  Google Scholar 

  45. O. Saleem, M. Wahaj, M.A. Akhtar, M.A. Ur Rehman, Fabrication and characterization of Ag–Sr-substituted hydroxyapatite/chitosan coatings deposited via electrophoretic deposition: a design of experiment study. ACS Omega 5(36), 22984–22992 (2020)

    Article  CAS  Google Scholar 

  46. J. Zvicer, A. Medic, D. Veljovic, S. Jevtic, S. Novak, B. Obradovic, Biomimetic characterization reveals enhancement of hydroxyapatite formation by fluid flow in gellan gum and bioactive glass composite scaffolds. Polym. Testing 76, 464–472 (2019)

    Article  CAS  Google Scholar 

  47. H. Zhu, J. Shen, X. Feng, H. Zhang, Y. Guo, J. Chen, Fabrication and characterization of bioactive silk fibroin/wollastonite composite scaffolds. Mater. Sci. Eng. C 30(1), 132–140 (2010)

    Article  CAS  Google Scholar 

  48. T. Wu, T. Lu, H. Shi, J. Wang, J. Ye, Enhanced osteogenesis, angiogenesis and inhibited osteoclastogenesis of a calcium phosphate cement incorporated with strontium doped calcium silicate bioceramic. Ceram. Int. 49(4), 6630–6645 (2023)

    Article  CAS  Google Scholar 

  49. Q. Miao, S. Yang, H. Ding, J. Liu, Controlled degradation of chitosan-coated strontium-doped calcium sulfate hemihydrate composite cement promotes bone defect repair in osteoporosis rats. Biomed. Mater. 15(5), 055039 (2020)

    Article  CAS  Google Scholar 

  50. X. Cui, Y. Zhang, J. Wang, C. Huang, Y. Wang, H. Yang, W. Liu, T. Wang, D. Wang, G. Wang, C. Ruan, D. Chen, W.W. Lu, W. Huang, M.N. Rahaman, H. Pan, Strontium modulates osteogenic activity of bone cement composed of bioactive borosilicate glass particles by activating Wnt/β-catenin signaling pathway. Bioact. Mater. 5(2), 334–347 (2020)

    Google Scholar 

  51. R. Monterubbianesi, M. Bencun, P. Pagella, A. Woloszyk, G. Orsini, T.A. Mitsiadis, A comparative in vitro study of the osteogenic and adipogenic potential of human dental pulp stem cells, gingival fibroblasts and foreskin fibroblasts. Sci. Rep. 9(1), 1761 (2019)

    Article  Google Scholar 

  52. T.-H. Huang, C.-T. Kao, Y.-F. Shen, Y.-T. Lin, Y.-T. Liu, S.-Y. Yen, C.-C. Ho, Substitutions of strontium in bioactive calcium silicate bone cements stimulate osteogenic differentiation in human mesenchymal stem cells. J. Mater. Sci.—Mater. Med. 30(6), 68 (2019)

    Article  CAS  Google Scholar 

  53. C.-T. Yu, F.-M. Wang, Y.-T. Liu, A.K. Lee, T.-L. Lin, Y.-W. Chen, Enhanced proliferation and differentiation of human mesenchymal stem cell-laden recycled fish gelatin/strontium substitution calcium silicate 3D scaffolds. Appl. Sci. 10(6), 2168 (2020)

    Article  CAS  Google Scholar 

  54. P.A. Krokhicheva, M.A. Goldberg, A.S. Fomin, D.R. Khayrutdinova, O.S. Antonova, A.S. Baikin, A.V. Leonov, E.M. Merzlyak, I.V. Mikheev, V.A. Kirsanova, I.K. Sviridova, S.A. Akhmedova, N.S. Sergeeva, S.M. Barinov, V.S. Komlev, Zn-doped calcium magnesium phosphate bone cement based on struvite and its antibacterial properties. Materials 16(13), 4824 (2023)

    Article  CAS  Google Scholar 

  55. P. Thaitalay, O. Thongsri, R. Dangviriyakul, S. Srisuwan, L. Carney, J.E. Gough, S.T. Rattanachan, Primary human osteoblast and mesenchymal stem cell responses to apatite/tricalcium phosphate bone cement modified with polyacrylic acid and bioactive glass. J. Biomed. Mater. Res., Part A 111(9), 1406–1422 (2023)

    Article  CAS  Google Scholar 

  56. H. Xu, L. Zhu, F. Tian, C. Wang, W. Wu, B. Lu, L. Yan, S. Jia, D. Hao, In Vitro and in vivo evaluation of injectable strontium-modified calcium phosphate cement for bone defect repair in rats. Int. J. Mol. Sci. (2023). https://doi.org/10.3390/ijms24010568

    Article  Google Scholar 

  57. G. Isik, N. Hasirci, A. Tezcaner, A. Kiziltay, Multifunctional periodontal membrane for treatment and regeneration purposes. J. Bioact. Compat. Polym. 35(2), 117–138 (2020)

    Article  CAS  Google Scholar 

  58. C. Bialorucki, G. Subramanian, M. Elsaadany, E. Yildirim-Ayan, In situ osteoblast mineralization mediates post-injection mechanical properties of osteoconductive material. J. Mech. Behav. Biomed. Mater. 38, 143–153 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge BIOMATEN-Center of Excellence in Biomaterials and Tissue Engineering and Central Laboratory of Middle East Technical University. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayşen Tezcaner.

Ethics declarations

Conflict of interest

The authors declare that no conflict of interests exists.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Işık, G., Pazarçeviren, A.E., Evis, Z. et al. Fibroin reinforced, strontium-doped calcium phosphate silicate cements for bone tissue engineering applications. Journal of Materials Research 38, 5017–5031 (2023). https://doi.org/10.1557/s43578-023-01211-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01211-6

Keywords

Navigation