Skip to main content
Log in

Layer-sliding-mediated reversible tuning of interfacial electronic and optical properties of intercalated ZrO2/MoS2 van der Waals heterostructure

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Effective techniques capable of tuning the properties of van der Waals (vdW) layered materials in a controllable as well as reversible manner are elusive. To demonstrate our proposed technique, an advantageous two-dimensional heterostructure (HS) is modeled using ZrO2 and MoS2 layers. Afterwards, variation of structural, electronic, interfacial and optical properties is performed by sliding one layer of the intercalated ZrO2/MoS2 vdW-HS over another. Electronic band structure calculations show a transition from metallic to semiconducting character upon Li intercalation. As the layer-sliding proceeds, mixing of bands across the Fermi level occurs and is intensified resulting in a metallic character vdW-HS obtained at the completion of the sliding pathway. It is found that Li-intercalation greatly upturns the charge transfer towards 2H–ZrO2 layer as compared to the unintercalated vdW-HS. Dielectric function is profoundly affected by Li-intercalation, and the maximum absorption region and polarization is reduced by 31 and 28%, respectively.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. V. Zatko et al., Band-gap landscape engineering in large-scale 2D semiconductor van der Waals heterostructures. ACS Nano 15(4), 7279–7289 (2021). https://doi.org/10.1021/acsnano.1c00544

    Article  CAS  Google Scholar 

  2. G. Swain, S. Sultana, K. Parida, A review on vertical and lateral heterostructures of semiconducting 2D-MoS2 with other 2D materials: a feasible perspective for energy conversion. Nanoscale 13(22), 9908–9944 (2021). https://doi.org/10.1039/D1NR00931A

    Article  CAS  Google Scholar 

  3. G. Barik, S. Pal, 2D MoS2–MoSe2 and MoS2–NbS2 lateral heterostructures as anode materials for LIBs/SIBs. Appl. Surf. Sci. 596, 153529 (2022). https://doi.org/10.1016/j.apsusc.2022.153529

    Article  CAS  Google Scholar 

  4. C.C. Tho et al., Cataloguing MoSi2N4 and WSi2N4 van der Waals heterostructures: an exceptional material platform for excitonic solar cell applications. Adv. Mater. Interfaces 10(2), 2201856 (2023). https://doi.org/10.1002/admi.202201856

    Article  CAS  Google Scholar 

  5. D. Singh, R. Ahuja, Two-dimensional perovskite/HfS2 van der Waals heterostructure as an absorber material for photovoltaic applications. ACS Appl. Energy Mater. 5(2), 2300–2307 (2022). https://doi.org/10.1021/acsaem.1c03796

    Article  CAS  Google Scholar 

  6. K. Si et al., A two-dimensional MoS2/WSe2 van der Waals heterostructure for enhanced photoelectric performance. Appl. Surf. Sci. 507, 145082 (2020). https://doi.org/10.1016/j.apsusc.2019.145082

    Article  CAS  Google Scholar 

  7. H. Fang et al., Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides. Proc. Natl. Acad. Sci. U.S.A. 111(17), 6198–6202 (2014). https://doi.org/10.1073/pnas.1405435111

    Article  CAS  Google Scholar 

  8. Z. Wang et al., Recent progress in 2D van der Waals heterostructures: fabrication, properties, and applications. Sci. China Inform. Sci. 65(11), 1–28 (2022). https://doi.org/10.1007/s11432-021-3432-6

    Article  Google Scholar 

  9. A. Patel et al., Optoelectronic properties of 2D van der Waals heterostructure As/PtS2 by first-principles calculations. Mater. Today: Proc. (2022). https://doi.org/10.1016/j.matpr.2022.07.099

    Article  Google Scholar 

  10. Q.H. Wang et al., Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699 (2012). https://doi.org/10.1038/nnano.2012.193

    Article  CAS  Google Scholar 

  11. A.V. Kolobov, J. Tominaga, Bulk TMDCs: review of structure and properties, in Two-dimensional transition-metal dichalcogenides. (Springer, Cham, 2016), pp.29–77

    Google Scholar 

  12. R. Lv et al., Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single-and few-layer nanosheets. Acc. Chem. Res. 48(1), 56–64 (2015). https://doi.org/10.1021/ar5002846

    Article  CAS  Google Scholar 

  13. S. Alkis et al., Thin film MoS2 nanocrystal based ultraviolet photodetector. Opt. Express 20(19), 21815–21820 (2012). https://doi.org/10.1364/OE.20.021815

    Article  CAS  Google Scholar 

  14. R. Chen et al., Free-standing hierarchically sandwich-type tungsten disulfide nanotubes/graphene anode for lithium-ion batteries. Nano Lett. 14(10), 5899–5904 (2014). https://doi.org/10.1021/nl502848z

    Article  CAS  Google Scholar 

  15. K.F. Mak et al., Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105(13), 136805 (2010). https://doi.org/10.1103/PhysRevLett.105.136805

    Article  CAS  Google Scholar 

  16. A. Splendiani et al., Emerging photoluminescence in monolayer MoS2. Nano Lett. 10(4), 1271–1275 (2010). https://doi.org/10.1021/nl903868w

    Article  CAS  Google Scholar 

  17. J. Weng, S.-P. Gao, A honeycomb-like monolayer of HfO2 and the calculation of static dielectric constant eliminating the effect of vacuum spacing. Phys. Chem. Chem. Phys. 20(41), 26453–26462 (2018). https://doi.org/10.1039/C8CP04743J

    Article  CAS  Google Scholar 

  18. J. Weng, S.-P. Gao, Structures and characteristics of atomically thin ZrO2 from monolayer to bilayer and two-dimensional ZrO2–MoS2 heterojunction. RSC Adv. 9(57), 32984–32994 (2019). https://doi.org/10.1039/C9RA06074J

    Article  CAS  Google Scholar 

  19. Y. Guo et al., Eighteen functional monolayer metal oxides: wide bandgap semiconductors with superior oxidation resistance and ultrahigh carrier mobility. Nanoscale Horiz. 4(3), 592–600 (2019). https://doi.org/10.1039/C8NH00273H

    Article  CAS  Google Scholar 

  20. C. Ataca, H. Sahin, S. Ciraci, Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. J. Phys. Chem. C 116(16), 8983–8999 (2012). https://doi.org/10.1021/jp212558p

    Article  CAS  Google Scholar 

  21. A. Molina-Sanchez, K. Hummer, L. Wirtz, Vibrational and optical properties of MoS2: from monolayer to bulk. Surf. Sci. Rep. 70(4), 554–586 (2015). https://doi.org/10.1016/j.surfrep.2015.10.001

    Article  CAS  Google Scholar 

  22. S. Balendhran et al., Two-dimensional molybdenum trioxide and dichalcogenides. Adv. Func. Mater. 23(32), 3952–3970 (2013). https://doi.org/10.1002/adfm.201300125

    Article  CAS  Google Scholar 

  23. Y. Zhang et al., A comparison study of the structural and mechanical properties of cubic, tetragonal, monoclinic, and three orthorhombic phases of ZrO2. J. Alloy. Compd. 749, 283–292 (2018). https://doi.org/10.1016/j.jallcom.2018.03.253

    Article  CAS  Google Scholar 

  24. W.W. Anku et al., Cobalt doped ZrO2 decorated multiwalled carbon nanotube: a promising nanocatalyst for photodegradation of indigo carmine and eosin Y dyes. Progress Nat. Sci.: Mater. Int. 26(4), 354–361 (2016). https://doi.org/10.1016/j.pnsc.2016.06.007

    Article  CAS  Google Scholar 

  25. W.W. Anku et al., Palladium-doped–ZrO2–multiwalled carbon nanotubes nanocomposite: an advanced photocatalyst for water treatment. Appl. Phys. A 122(6), 1–8 (2016). https://doi.org/10.1007/s00339-016-0086-8

    Article  CAS  Google Scholar 

  26. Z. Shu, X. Jiao, D. Chen, Hydrothermal synthesis and selective photocatalytic properties of tetragonal star-like ZrO2 nanostructures. CrystEngComm 15(21), 4288–4294 (2013). https://doi.org/10.1039/C3CE40234G

    Article  CAS  Google Scholar 

  27. Y. Hao et al., Multilayer and open structure of dendritic crosslinked CeO2–ZrO2 composite: enhanced photocatalytic degradation and water splitting performance. Int. J. Hydrogen Energy 42(9), 5916–5929 (2017). https://doi.org/10.1016/j.ijhydene.2017.01.093

    Article  CAS  Google Scholar 

  28. K. Xu et al., The role of Anderson’s rule in determining electronic, optical and transport properties of transition metal dichalcogenide heterostructures. Phys. Chem. Chem. Phys. 20(48), 30351–30364 (2018). https://doi.org/10.1039/C8CP05522J

    Article  CAS  Google Scholar 

  29. Y. Kim et al., Synthesis of two-dimensional MoS2/graphene heterostructure by atomic layer deposition using MoF6 precursor. Appl. Surf. Sci. 494, 591–599 (2019). https://doi.org/10.1016/j.apsusc.2019.07.168

    Article  CAS  Google Scholar 

  30. Q. Zhang et al., Two-dimensional layered heterostructures synthesized from core–shell nanowires. Angew. Chem. Int. Ed. 54(31), 8957–8960 (2015). https://doi.org/10.1002/anie.201502461

    Article  CAS  Google Scholar 

  31. S. Rathi et al., Tunable electrical and optical characteristics in monolayer graphene and few-layer MoS2 heterostructure devices. Nano Lett. 15(8), 5017–5024 (2015). https://doi.org/10.1021/acs.nanolett.5b01030

    Article  CAS  Google Scholar 

  32. X. Ji et al., High-performance photodetectors based on MoTe2–MoS2 van der Waals heterostructures. ACS Omega 7(12), 10049–10055 (2022). https://doi.org/10.1021/acsomega.1c06009

    Article  CAS  Google Scholar 

  33. P.-Z. Jia et al., Excellent thermoelectric performance induced by interface effect in MoS2/MoSe2 van der Waals heterostructure. J. Phys. Condens. Matter 32(5), 055302 (2019). https://doi.org/10.1088/1361-648X/ab4cab

    Article  Google Scholar 

  34. H. Zhao et al., Type-II van der Waals heterostructures based on AsP and transition metal dichalcogenides: great promise for applications in solar cell. Phys. Status Solidi (RRL)—Rapid Res. Lett. (2022). https://doi.org/10.1002/pssr.202200043

    Article  Google Scholar 

  35. V. Patel et al., Optoelectronic properties of 2D heterojunction ZrO2–MoS2 material using first-principles calculations. Solid State Commun. 334, 114358 (2021). https://doi.org/10.1016/j.ssc.2021.114358

    Article  CAS  Google Scholar 

  36. J. Ni et al., Using van der Waals heterostructures based on two-dimensional InSe–XS2 (X = Mo, W) as promising photocatalysts for hydrogen production. J. Mater. Chem. C 8(36), 12509–12515 (2020). https://doi.org/10.1039/D0TC02874F

    Article  CAS  Google Scholar 

  37. S. Li et al., Ta3N5/CdS core–shell S-scheme heterojunction nanofibers for efficient photocatalytic removal of antibiotic tetracycline and Cr (VI): performance and mechanism insights. Adv. Fiber Mater. (2023). https://doi.org/10.1007/s42765-022-00253-5

    Article  Google Scholar 

  38. S. Li et al., S-Scheme photocatalyst TaON/Bi2WO6 nanofibers with oxygen vacancies for efficient abatement of antibiotics and Cr (VI): intermediate eco-toxicity analysis and mechanistic insights. Chin. J. Catal. 43(10), 2652–2664 (2022). https://doi.org/10.1016/S1872-2067(22)64106-8

    Article  CAS  Google Scholar 

  39. M. Cai et al., Novel Cd0.5Zn0.5S/Bi2MoO6 S-scheme heterojunction for boosting the photodegradation of antibiotic enrofloxacin: degradation pathway, mechanism and toxicity assessment. Sep. Purif. Technol. 304, 122401 (2023). https://doi.org/10.1016/j.seppur.2022.122401

    Article  CAS  Google Scholar 

  40. S. Li et al., Enhanced antibiotic degradation performance of Cd0.5Zn0.5S/Bi2MoO6 S-scheme photocatalyst by carbon dot modification. J. Mater. Sci. Technol. (2023). https://doi.org/10.1016/j.jmst.2023.05.009

    Article  Google Scholar 

  41. C. Wang et al., A novel organic/inorganic S-scheme heterostructure of TCPP/Bi12O17Cl2 for boosting photodegradation of tetracycline hydrochloride: kinetic, degradation mechanism, and toxic assessment. Appl. Surf. Sci. 610, 155346 (2023). https://doi.org/10.1016/j.apsusc.2022.155346

    Article  CAS  Google Scholar 

  42. S. Li et al., Constructing Cd0.5Zn0.5S/Bi2WO6 S-scheme heterojunction for boosted photocatalytic antibiotic oxidation and Cr (VI) reduction. Adv. Powder Mater. 2(1), 100073 (2023). https://doi.org/10.1016/j.apmate.2022.100073

    Article  Google Scholar 

  43. C.-H. Yang, S.-T. Chang, First-principles study of the optical properties of TMDC/graphene heterostructures. Photonics (2022). https://doi.org/10.3390/photonics9060387

    Article  Google Scholar 

  44. J. Fan, M. Sun, Transition metal dichalcogenides (TMDCs) heterostructures: synthesis, excitons and photoelectric properties. Chem. Record (2022). https://doi.org/10.1002/tcr.202100313

    Article  Google Scholar 

  45. X. Li et al., A two-dimensional MoS2/SnS heterostructure for promising photocatalytic performance: first-principles investigations. Physica E 126, 114453 (2021). https://doi.org/10.1016/j.physe.2020.114453

    Article  CAS  Google Scholar 

  46. K. Zhang et al., Construction of S-scheme g-C3N4/ZrO2 heterostructures for enhancing photocatalytic disposals of pollutants and electrocatalytic hydrogen evolution. Dyes Pigm. 180, 108525 (2020). https://doi.org/10.1016/j.dyepig.2020.108525

    Article  CAS  Google Scholar 

  47. C. Rakhi, K. Preetha, Synthesis and characterization of ZrO2/Bi2MoO6 heterostructured thin films for optoelectronic and photocatalytic applications. Appl. Phys. A 128(1), 1–12 (2022). https://doi.org/10.1007/s00339-021-05161-w

    Article  CAS  Google Scholar 

  48. E. Długoń et al., Anticorrosive ZrO2 and ZrO2–SiO2 layers on titanium substrates for biomedical applications. Surf. Coat. Technol. 331, 221–229 (2017). https://doi.org/10.1016/j.surfcoat.2017.10.011

    Article  CAS  Google Scholar 

  49. J. Li et al., Design, preparation, and durability of TiO2/SiO2 and ZrO2/SiO2 double-layer antireflective coatings in crystalline silicon solar modules. Sol. Energy 89, 134–142 (2013). https://doi.org/10.1016/j.solener.2012.12.011

    Article  CAS  Google Scholar 

  50. E.D. Sherly et al., A comparative study of the effects of CuO, NiO, ZrO2 and CeO2 coupling on the photocatalytic activity and characteristics of ZnO. Korean J. Chem. Eng. 33(4), 1431–1440 (2016). https://doi.org/10.1007/s11814-015-0285-6

    Article  CAS  Google Scholar 

  51. W. Zhou et al., Multi-modal mesoporous TiO2–ZrO2 composites with high photocatalytic activity and hydrophilicity. Nanotechnology 19(3), 035610 (2007). https://doi.org/10.1088/0957-4484/19/03/035610

    Article  CAS  Google Scholar 

  52. S.-W. Zheng et al., Observation of robust charge transfer under strain engineering in two-dimensional MoS2–WSe2 heterostructures. Nanoscale 13(33), 14081–14088 (2021). https://doi.org/10.1039/D1NR02014E

    Article  Google Scholar 

  53. X. Zhao et al., Biaxial strain improving the thermoelectric performance of a two-dimensional MoS2/WS2 heterostructure. ACS Appl. Electron. Mater. 3(7), 2995–3004 (2021). https://doi.org/10.1021/acsaelm.1c00187

    Article  CAS  Google Scholar 

  54. M. Yousaf et al., Effect of layer sliding on the interfacial electronic properties of intercalated silicene/indium selenide van der Waals heterostructure. Commun. Theor. Phys. 74(3), 035701 (2022). https://doi.org/10.1088/1572-9494/ac450f

    Article  Google Scholar 

  55. R. Gao et al., Two-dimensional MoS2/GaN van der Waals heterostructures: tunable direct band alignments and excitonic optical properties for photovoltaic applications. J. Phys. D Appl. Phys. 53(9), 095107 (2019). https://doi.org/10.1088/1361-6463/ab5ab9

    Article  CAS  Google Scholar 

  56. F.A. Rasmussen, K.S. Thygesen, Computational 2D materials database: electronic structure of transition-metal dichalcogenides and oxides. J. Phys. Chem. C 119(23), 13169–13183 (2015). https://doi.org/10.1021/acs.jpcc.5b02950

    Article  CAS  Google Scholar 

  57. B. Qiu et al., Optical properties of graphene/MoS2 heterostructure: first principles calculations. Nanomaterials 8(11), 962 (2018). https://doi.org/10.3390/nano8110962

    Article  CAS  Google Scholar 

  58. M. Mubashir et al., Efficient hydrogen storage in LiMgF3: a first principle study. Int. J. Hydrogen Energy (2023). https://doi.org/10.1016/j.ijhydene.2023.08.131

    Article  Google Scholar 

  59. S. Li et al., Facile fabrication of TaON/Bi2MoO6 core–shell S-scheme heterojunction nanofibers for boosting visible-light catalytic levofloxacin degradation and Cr (VI) reduction. Chem. Eng. J. 428, 131158 (2022). https://doi.org/10.1016/j.cej.2021.131158

    Article  CAS  Google Scholar 

  60. S. Li et al., Rationally designed Ta3N5/BiOCl S-scheme heterojunction with oxygen vacancies for elimination of tetracycline antibiotic and Cr (VI): performance, toxicity evaluation and mechanism insight. J. Mater. Sci. Technol. 123, 177–190 (2022). https://doi.org/10.1016/j.jmst.2022.02.012

    Article  CAS  Google Scholar 

  61. S. Li et al., S-scheme MIL-101 (Fe) octahedrons modified Bi2WO6 microspheres for photocatalytic decontamination of Cr (VI) and tetracycline hydrochloride: synergistic insights, reaction pathways, and toxicity analysis. Chem. Eng. J. 455, 140943 (2023). https://doi.org/10.1016/j.cej.2022.140943

    Article  CAS  Google Scholar 

  62. S. Li et al., Facile construction of novel Bi2WO6/Ta3N5 Z-scheme heterojunction nanofibers for efficient degradation of harmful pharmaceutical pollutants. Chem. Eng. J. 402, 126165 (2020). https://doi.org/10.1016/j.cej.2020.126165

    Article  CAS  Google Scholar 

  63. P. Giannozzi et al., QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21(39), 395502 (2009). https://doi.org/10.1088/0953-8984/21/39/395502

    Article  Google Scholar 

  64. J.P. Perdew, Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45(23), 13244 (1992). https://doi.org/10.1103/PhysRevB.45.13244

    Article  CAS  Google Scholar 

  65. M. Schlüter, D. Hamann, C. Chiang, Norm-conserving pseudopotentials. Phys. Rev. Lett. 43, 1494–1497 (1979). https://doi.org/10.1103/PhysRevLett.43.1494

    Article  Google Scholar 

  66. N. Trouiller, J.L. Martins, Efficient pseudopotentials for plane-wave calculations Phys. Rev. B: Condens. (1991). https://doi.org/10.1103/PhysRevB.43.1993

    Article  Google Scholar 

Download references

Funding

This research received no specific grant from any funding agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masood Yousaf.

Ethics declarations

Conflict of interest

The authors declare that there are no conflict of interest in the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Younis, M.W., Akhter, T., Yousaf, M. et al. Layer-sliding-mediated reversible tuning of interfacial electronic and optical properties of intercalated ZrO2/MoS2 van der Waals heterostructure. Journal of Materials Research 38, 4995–5007 (2023). https://doi.org/10.1557/s43578-023-01209-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01209-0

Keywords

Navigation