Skip to main content
Log in

Synthesis of phyto-mediated CuO–ZrO2 nanocomposite and investigation of their role as electrode material for supercapacitor and water splitting studies

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The present research focused on environmentally benign synthesis of CuO–ZrO2 nanocomposite using bioactive compounds of A. viridis. Phase analysis of CuO–ZrO2 using Xray diffraction revealed the crystal size of 30.3 nm. Scanning electron microscope showed spherical-shaped nanoparticles of 88 nm size. The band gap value of 2.25 eV was obtained. The synthesized CuO–ZrO2 material was further investigated as electrode material for supercapacitor and water splitting studies. Cyclic voltammetry was used to estimate the specific capacitance value of 374.7 F/g, and galvanostatic charge discharge was used to determine the specific capacitance value of 286.3 F/g. Electrochemical impedance spectroscopy (EIS) and linear sweep voltammetry (LSV) were used to conduct HER and OER experiments. Tafel value of 143 mV/dec and overpotential value of 225 mV was recorded for composite by LSV for hydrogen evolution reaction.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

Data would be available on demand.

Code availability

Not applicable.

References

  1. W. Su, R. Miao, B. Tao, F. Miao, High-performance symmetric supercapacitor based on flower-like zinc-cobalt-molybdenum hybrid metal oxide. Ionics (2019). https://doi.org/10.1007/s11581-019-03125-y

    Article  Google Scholar 

  2. M.H. Balali, N. Nouri, E. Omrani, A. Nasiri, W. Otieno, An overview of the environmental, economic, and material developments of the solar and wind sources coupled with the energy storage systems. Int. J. Energy Res. 41, 1948–1962 (2017). https://doi.org/10.1002/er.3755

    Article  Google Scholar 

  3. M. Gao, W. Sheng, Z. Zhuang, Q. Fang, S. Gu, J. Jiang, Y. Yan, Efficient water oxidation using nanostructured α-nickel-hydroxide as an electrocatalyst. J. Am. Chem. Soc. 136, 7077–7084 (2014). https://doi.org/10.1021/ja502128j

    Article  CAS  Google Scholar 

  4. L. Trotochaud, S.L. Young, J.K. Ranney, S.W. Boettcher, Nickel–iron oxyhydroxide oxygen-evolution electrocatalysts: the rolof intentional and incidental iron incorporation. J. Am. Chem. Soc. 136, 6744–6753 (2014). https://doi.org/10.1021/ja502379c

    Article  CAS  Google Scholar 

  5. Y. Li, H. Zhang, T. Xu, Z. Lu, X. Wu, P. Wan, X. Sun, L. Jiang, Under-water superaerophobic pine-shaped Pt nanoarray electrode for ultrahigh-performance hydrogen evolution. Adv. Funct. Mater. (2015). https://doi.org/10.1002/adfm.201404250

    Article  Google Scholar 

  6. S.Q. Wang, W.Y. Xia, Z.S. Liang, Z.L. Liu, C.W. Xu, Q.Y. Li, NiO/C enhanced by noble metal (Pt, Pd, Au) as high-efficient electrocatalyst for oxygen evolution reaction in water oxidation to obtain high purity hydrogen. Ionics (2017). https://doi.org/10.1007/s11581-017-2041-x

    Article  Google Scholar 

  7. M.I. Jamesh, Recent progress on earth abundant hydrogen evolution reaction and oxygen evolution reaction bifunctional electrocatalyst for overall water splitting in alkaline media. J Power Sources 196, 213–236 (2016). https://doi.org/10.1016/j.jpowsour.2016.09.161

    Article  CAS  Google Scholar 

  8. W. Hu, Y. Wang, X. Hu, Y. Zhou, S. Chen, Three-dimensional ordered macroporous IrO2 as electrocatalyst for oxygen evolution reaction in acidic medium. J. Mater. Chem. 22, 6010–6016 (2012). https://doi.org/10.1039/C2JM16506F

    Article  CAS  Google Scholar 

  9. R. Li, Z. Wei, X. Gou, Nitrogen and phosphorus dual-doped graphene/carbon nanosheets as bifunctional electrocatalysts for oxygen reduction and evolution. ACS Catal. 5, 4133–4142 (2015). https://doi.org/10.1021/acscatal.5b00601

    Article  CAS  Google Scholar 

  10. X. Zhou, Y. Liu, H. Ju, B. Pan, J. Zhu, T. Ding, C. Wang, Q. Yang, Design and epitaxial growth of MoSe2–NiSe vertical hetero nano structures with electronic modulation for enhanced hydrogen evolution reaction. Chem. Mater. 28, 1838–1846 (2016). https://doi.org/10.1021/acs.chemmater.5b05006

    Article  CAS  Google Scholar 

  11. K.S. Ahmad, S.B. Jaffri, Phytosynthetic Ag doped ZnO nanoparticles: semiconducting green remediators. Open Chem. 16, 556–570 (2018). https://doi.org/10.1515/chem-2018-0060

    Article  CAS  Google Scholar 

  12. I. Shakir, M. Shahid, S. Cherevko, C.H. Chung, D.J. Kang, Ultrahigh-energy and stable supercapacitors based on intertwined porous MoO3–MWCNT nanocomposites. Electrochim. Acta. 30(58), 76–80 (2011). https://doi.org/10.1016/j.electacta.2011.08.076

    Article  CAS  Google Scholar 

  13. S.K. Ujjain, G. Singh, R.K. Sharma, Co3O4@ reduced graphene oxide nanoribbon for high performance asymmetric supercapacitor. Electrochim. Acta 169, 276–282 (2015). https://doi.org/10.1016/j.electacta.2015.03.141

    Article  CAS  Google Scholar 

  14. T. Pettong, P. Iamprasertkun, A. Krittayavathananon, P. Sukha, P. Sirisinudomkit, A. Seubsai, M. Chareonpanich, P. Kongkachuichay, J. Limtrakul, M. Sawangphruk, High-performance asymmetric supercapacitors of MnCo2O4 nanofibers and N-doped reduced graphene oxide aerogel. ACS Appl. Mater. Interfaces 8, 34045–53 (2016). https://doi.org/10.1021/acsami.6b09440

    Article  CAS  Google Scholar 

  15. G. Li, M. Chen, Y. Ouyang, D. Yao, L. Lu, L. Wang, X. Xia, W. Lei, S.M. Chen, D. Mandler, Q. Hao, Manganese doped Co3O4 mesoporous nanoneedle array for long cycle-stable supercapacitors. Appl. Surf. Sci. 469, 941–950 (2019). https://doi.org/10.1016/j.apsusc.2018.11.099

    Article  CAS  Google Scholar 

  16. Y. Tong, X. Cheng, X. Liu, D. Qi, B. Chi, Y. Wang, Hybrid Co3O4/Co9S8 nanowires for high-performance asymmetric supercapacitors. J. Nanoelectron. 15, 237–242 (2020). https://doi.org/10.1166/jno.2020.2691

    Article  CAS  Google Scholar 

  17. S.B. Jafri, K.S. Ahmad, Augmented photocatalytic, antibacterial and antifungal activity of prunosynthetic silver nanoparticles. Artif. Cells Nanomed. Biotech. 46, 127–137 (2018). https://doi.org/10.1080/21691401.2017.1414826

    Article  CAS  Google Scholar 

  18. I. Shaheen, K.S. Ahmad, S.B. Jaffri, D. Ali, Biomimetic [MoO3@ZnO] semiconducting nanocomposites: chemo-proportional fabrication, characterization and energy storage potential exploration. Renew. Energy. 167, 568–579 (2021). https://doi.org/10.1016/j.renene.2020.11.115

    Article  CAS  Google Scholar 

  19. K. Kombaiah, J.J. Vijaya, L.J. Kennedy, M. Bououdina, K. Kaviyarasu, R.J. Ramalingam, H.A. Al-Lohedan, M.A. Munusamy, A green approach: synthesis, characterization and opto-magnetic properties of MgxMn1–x Fe2O4 spinel nanoparticles. J. Mater. Sci. Mater. Electron. 28, 10321–10329 (2017). https://doi.org/10.1007/s10854-017-6800-2

    Article  CAS  Google Scholar 

  20. K.S. Ahmad, S.B. Jafri, Carpogenic ZnO nanoparticles: amplifed nanophotocatalytic and antimicrobial action. IET. Nanobiotech. 13, 150–159 (2019). https://doi.org/10.1049/iet-nbt.2018.5006

    Article  Google Scholar 

  21. J. Fulekar, D.P. Dutta, B. Pathak, M.H. Fulekar, Novel microbial and root mediated green synthesis of TiO2 nanoparticles and its application in wastewater remediation. J. Chem. Techno. 93, 736–743 (2018). https://doi.org/10.1002/jctb.5423

    Article  CAS  Google Scholar 

  22. I. Shaheen, K.S. Ahmad, C. Zequine, R.K. Gupta, A. Thomas, M.A. Malik, Organic template-assisted green synthesis of CoMoO 4 nanomaterials for the investigation of energy storage properties. RSC Adv. 10, 8115–8129 (2020). https://doi.org/10.1039/C9RA09477F

    Article  CAS  Google Scholar 

  23. T. Zahra, K.S. Ahmad, A.G. Thomas, C. Zequine, R.K. Gupta, M.A. Malik, M. Sohail, Phyto-inspired and scalable approach for the synthesis of PdO–2Mn2O3: a nano-material for application in water splitting electro-catalysis. RSC Adv. 10, 29961–29974 (2020). https://doi.org/10.1039/D0RA04571C

    Article  CAS  Google Scholar 

  24. S. Azhar, K.S. Ahmad, I. Abrahams, W. Lin, R.K. Gupta, M. Mazhar, D. Ali, Phyto-inspired Cu/Bi oxide-based nanocomposites: synthesis, characterization, and energy relevant investigation. RSC Adv. 11, 30510–30519 (2021). https://doi.org/10.1039/D1RA05066D

    Article  CAS  Google Scholar 

  25. I. Shaheen, K.S. Ahmad, C. Zequine, R.K. Gupta, A.G. Thomas, M.A. Malik, Functionalization of MoO3NiMoO4 nanocomposite using organic template for energy storage application. J. Energy Storage 29, 101309 (2020). https://doi.org/10.1016/j.est.2020.101309

    Article  Google Scholar 

  26. T. Zahra, K.S. Ahmad, A.G. Thomas, C. Zequine, M.A. Malik, R.K. Gupta, Organic template-based ZnO embedded Mn 3 O 4 nanoparticles: synthesis and evaluation of their electrochemical properties towards clean energy generation. RSC Adv. 10, 9854–9867 (2020). https://doi.org/10.1039/C9RA10472K

    Article  CAS  Google Scholar 

  27. M. Yin, C.K. Wu, Y. Lou, C. Burda, J.T. Koberstein, Y. Zhu, S. O’Brien, Copper oxide nanocrystals. J. ACS. 127, 9506–11 (2005). https://doi.org/10.1021/ja050006u

    Article  CAS  Google Scholar 

  28. A. Inoue, B. Shen, Soft magnetic properties of nanocrystalline Fe–Co–B–Si–Nb–Cu alloys in ribbon and bulk forms. JMR 129, 2799–806 (2003). https://doi.org/10.1557/JMR.2003.0390

    Article  Google Scholar 

  29. M.S. Hassan, T. Amna, O.B. Yang, M.H. El-Newehy, S.S. Al-Deyab, M.S. Khil, Smart copper oxide nanocrystals: synthesis, characterization, electrochemical and potent antibacterial activity. Colloid. Surf. B. 97, 201–206 (2012). https://doi.org/10.1016/j.colsurfb.2012.04.032

    Article  CAS  Google Scholar 

  30. J.Y. Xiang, J.P. Tu, L. Zhang, Y. Zhou, X.L. Wang, S.J. Shi, Self-assembled synthesis of hierarchical nanostructured CuO with various morphologies and their application as anodes for lithium ion batteries. J. Power Sources 195, 313–9 (2010). https://doi.org/10.1016/j.jpowsour.2009.07.022

    Article  CAS  Google Scholar 

  31. J.Y. Xiang, J.P. Tu, L. Zhang, Y. Zhou, X.L. Wang, S.J. Shi, Simple synthesis of surface-modified hierarchical copper oxide spheres with needle-like morphology as anode for lithium ion batteries. Electrochim. Acta 55, 1820–1824 (2010). https://doi.org/10.1016/j.electacta.2009.10.073

    Article  CAS  Google Scholar 

  32. R. Sigwadi, M. Dhlamini, T. Mokrani, F. Nemavhola, Preparation of a high surface area zirconium oxide for fuel cell application. Int. J. Mech. Mater. Eng. 14, 1–1 (2019). https://doi.org/10.1186/s40712-019-0102-9

    Article  Google Scholar 

  33. I. Shaheen, K.S. Ahmad, C. Zequine, R.K. Gupta, A.G. Thomas, M.A. Malik, Green synthesis of ZnO–Co3O4 nanocomposite using facile foliar fuel and investigation of its electrochemical behaviour for supercapacitors. NJC 44, 18281–18292 (2020). https://doi.org/10.1039/D0NJ03430D

    Article  CAS  Google Scholar 

  34. N. Mayedwa, N. Mongwaketsi, S. Khamlich, K. Kaviyarasu, N. Matinise, M. Maaza, Green synthesis of nickel oxide, palladium and palladium oxide synthesized via Aspalathus linearis natural extracts: physical properties & mechanism of formation. Appl. Surf. Sci. 15(446), 266–72 (2018). https://doi.org/10.1016/j.apsusc.2017.12.116

    Article  CAS  Google Scholar 

  35. Y. Li, K. Li, Y. Luo, B. Liu, H. Wang, L. Gao, G. Duan, Synthesis of Co3O4/ZnO nano-heterojunctions by one-off processing ZIF-8@ ZIF-67 and their gas-sensing performances for trimethylamine. Sens. Acutators. B. Chem. 308, 127657 (2020). https://doi.org/10.1016/j.snb.2020.127657

    Article  CAS  Google Scholar 

  36. J. Sun, L. Sun, S. Bai, H. Fu, J. Guo, Y. Feng, R. Luo, D. Li, A. Chen, Pyrolyzing Co/Zn bimetallic organic framework to form pn heterojunction of Co3O4/ZnO for detection of formaldehyde. Sens. Acutators. B. 15, 291–301 (2019). https://doi.org/10.1016/j.snb.2018.12.080

    Article  CAS  Google Scholar 

  37. I. Hussain, S.G. Mohamed, A. Ali, N. Abbas, S.M. Ammar, W. Al Zoubi, Uniform growth of Zn-Mn-Co ternary oxide nanoneedles for high-performance energy-storage applications. J. Electroanal. Chem. 15, 39–47 (2019). https://doi.org/10.1016/j.jelechem.2019.01.052

    Article  CAS  Google Scholar 

  38. S. Ahmed, S.A. Chaudhry, S. Ikram, A review on biogenic synthesis of ZnO nanoparticles using plant extracts and microbes: a prospect towards green chemistry. J. Photochem. Photobiol. B. Biol. 166, 272–284 (2017). https://doi.org/10.1016/j.jphotobiol.2016.12.011

    Article  CAS  Google Scholar 

  39. F. Sultana, J. Barman, M.C. Kalita, Biogenic synthesis of ZnO nanoparticles using polygonum chinense leaf extract and their antibacterial activity. Int. J. Nanotechnol. Appl. 11, 155–165 (2017)

    Google Scholar 

  40. H. Jan, M. Shah, H. Usman, M.A. Khan, M. Zia, C. Hano, B.H. Abbasi, Biogenic synthesis and characterization of antimicrobial and antiparasitic zinc oxide (ZnO) nanoparticles using aqueous extracts of the Himalayan Columbine (Aquilegia pubiflora). Front. Mater. 12, 7–249 (2020)

    Google Scholar 

  41. J. Jayabalan, G. Mani, N. Krishnan, J. Pernabas, J.M. Devadoss, H.T. Jang, Green biogenic synthesis of zinc oxide nanoparticles using Pseudomonas putida culture and its in vitro antibacterial and anti-biofilm activity. ISBAB 21, 101327 (2019). https://doi.org/10.1016/j.bcab.2019.101327

    Article  Google Scholar 

  42. N.M. Ngoepe, Z. Mbita, M. Mathipa, N. Mketo, B. Ntsendwana, N.C. Hintsho-Mbita, Biogenic synthesis of ZnO nanoparticles using Monsonia burkeana for use in photocatalytic, antibacterial and anticancer applications. Ceram. Int. 44, 16999–17006 (2018). https://doi.org/10.1016/j.ceramint.2018.06.142

    Article  CAS  Google Scholar 

  43. T. Zahra, K.S. Ahmad, C. Zequine, R.K. Gupta, A.G. Thomas, M.A. Malik, Evaluation of electrochemical properties for water splitting by NiO nano-cubes synthesized using Olea ferruginea Royle. Sustain 40, 100753 (2020). https://doi.org/10.1016/j.seta.2020.100753

    Article  Google Scholar 

  44. S.B. Jaffri, K.S. Ahmad, Biomimetic detoxifier Prunus cerasifera Ehrh. silver nanoparticles: innate green bullets for morbific pathogens and persistent pollutants. ESPR 27, 9669–85 (2020). https://doi.org/10.1007/s11356-020-07626-6

    Article  CAS  Google Scholar 

  45. S. Azhar, K.S. Ahmad, I. Abrahams, S.B. Jaffri, T. Ingsel, R.K. Gupta, D. Ali, Biomimetic [AV-Er2O3-doped δ-Bi2O3]-stacked nanoplates: an efficient electrocatalyst for OER/HER and electrode material for supercapacitor application. Ionics 27, 1–6 (2023). https://doi.org/10.1007/s11581-023-05002-1

    Article  CAS  Google Scholar 

  46. H. Han, K.M. Kim, H. Choi, G. Ali, K.Y. Chung, Y.R. Hong, J. Choi, J. Kwon, S.W. Lee, J.W. Lee, J.H. Ryu, Parallelized reaction pathway and stronger internal band bending by partial oxidation of metal sulfide–graphene composites: important factors of synergistic oxygen evolution reaction enhancement. ACS Catal. 8, 4091–4102 (2018). https://doi.org/10.1021/acscatal.8b00017

    Article  CAS  Google Scholar 

  47. A.Q. Mugheri, A. Tahira, U. Aftab, M.I. Abro, S.R. Chaudhry, L. Amaral, Z.H. Ibupoto, Facile efficient earth abundant NiO/C composite electrocatalyst for the oxygen evolution reaction. RSC Adv. 9, 5701–10 (2019). https://doi.org/10.1039/C8RA10472G

    Article  CAS  Google Scholar 

  48. J. Wu, Y. Xue, X. Yan, W. Yan, Q. Cheng, Y. Xie, Co3O4 nanocrystals on single-walled carbon nanotubes as a highly efcient oxygen-evolving catalyst. Nano. Res. 5, 521–530 (2012). https://doi.org/10.1007/s12274-012-0237-y

    Article  CAS  Google Scholar 

  49. Y. Li, P. Hasin, Y. Wu, NixCo3− xO4 nanowire arrays for electrocatalytic oxygen evolution. Adv. Mater. 22, 1926–1929 (2010). https://doi.org/10.1002/adma.200903896

    Article  CAS  Google Scholar 

  50. K. Thiagarajan, J. Theerthagiri, R.A. Senthil, P. Arunachalam, J. Madhavan, M.A. Ghanem, Synthesis of Ni3V2O8@ graphene oxide nanocomposite as an efficient electrode material for supercapacitor applications. J. Solid State Electrochem. 22, 527–536 (2018). https://doi.org/10.1007/s10008-017-3788-8

    Article  CAS  Google Scholar 

  51. I.S. Lee, N. Lee, J. Park, B.H. Kim, Y.W. Yi, T. Kim, T.K. Kim, I.H. Lee, S.R. Paik, T. Hyeon, Ni/NiO core/shell nanoparticles for selective binding and magnetic separation of histidine-tagged proteins. J. ACS 128, 10658–10659 (2006). https://doi.org/10.1021/ja063177n

    Article  CAS  Google Scholar 

  52. S. Khalid, C. Cao, L. Wang, Y. Zhu, Microwave assisted synthesis of porous NiCo2O4 microspheres: application as high performance asymmetric and symmetric supercapacitors with large areal capacitance. Sci. Rep. 26, 22699 (2016). https://doi.org/10.1038/srep22699

    Article  CAS  Google Scholar 

  53. H.B. Kolodziej, B. Rozenfeld, Plasmon losses in energy spectra of electrons scattered on the surface of Fe, Co, Ni, Cu, and Zn samples, Acta Phys. Pol., A;(Poland).48(1975).

  54. D.R. Cummins, U. Martinez, A. Sherehiy, R. Kappera, A. Martinez-Garcia, R.K. Schulze, J. Jasinski, J. Zhang, R.K. Gupta, J. Lou, M. Chhowalla, Efficient hydrogen evolution in transition metal dichalcogenides via a simple one-step hydrazine reaction. Nat. Commun. 7, 11857 (2016). https://doi.org/10.1038/ncomms11857

    Article  CAS  Google Scholar 

  55. N. Mahmood, Y. Yao, J.W. Zhang, L. Pan, X. Zhang, J.J. Zou, Electrocatalysts for hydrogen evolution in alkaline electrolytes: mechanisms, challenges, and prospective solutions. Adv. Sci. 5, 1700464 (2018). https://doi.org/10.1002/advs.201700464

    Article  CAS  Google Scholar 

  56. J. Wang, F. Xu, H. Jin, Y. Chen, Y. Wang, Non-noble metalbased carbon composites in hydrogen evolution reaction: fundamentals to applications. Adv. Mat. 14, 1605838 (2021). https://doi.org/10.1002/adma.201605838

    Article  CAS  Google Scholar 

  57. B. Liu, S. Qu, Y. Kou, Z. Liu, X. Chen, Y. Wu, X. Han, Y. Deng, W. Hu, C. Zhong, Mat. Interf. 10, 30433–304340 (2018). https://doi.org/10.1021/acsami.8b10645

    Article  CAS  Google Scholar 

  58. D. Merki, S. Fierro, H. Vrubel, X. Hu, Amorphous molybdenum sulfde flms as catalysts for electrochemical hydrogen production in water. Chem. Sci. 2, 1262–1267 (2011). https://doi.org/10.1039/C1SC00117E

    Article  CAS  Google Scholar 

  59. X. Wu, X. Han, X. Ma, W. Zhang, Y. Deng, C. Zhong, W. Hu, Morphology-controllable synthesis of Zn–Co-mixed sulfde nanostructures on carbon fber paper toward efcient rechargeable zinc–air batteries and water electrolysis. ACS Appl. Mat. Interf. 9, 12574–12583 (2017). https://doi.org/10.1021/acsami.6b16602

    Article  CAS  Google Scholar 

  60. X. Han, Y. Yang, J.J. Zhou, Q. Ma, K. Tao, L. Han, Metal-organic framework templated 3D hierarchical ZnCo2O4@ Ni (OH)2 core-shell nanosheet arrays for high-performance supercapacitors. Eur. J. Chem. 24, 18106–18114 (2018). https://doi.org/10.1002/chem.201804327

    Article  CAS  Google Scholar 

  61. C. Gervas, M.D. Khan, S. Mlowe, C. Zhang, C. Zhao, R.K. Gupta, M.P. Akerman, P. Mashazi, T. Nyokong, N. Revaprasadu, Synthesis of off-stoichiometric CoS nanoplates from a molecular precursor for efficient H2/O2 evolution and supercapacitance. Chem. Electro. Chem. 6, 2560–2569 (2019). https://doi.org/10.1002/celc.201900413

    Article  CAS  Google Scholar 

  62. E. Duraisamy, H.T. Das, A.S. Sharma, P. Elumalai, Supercapacitor and photocatalytic performances of hydrothermally-derived Co3O4/CoO@ carbon nanocomposite. NJC 42, 6114–6124 (2018). https://doi.org/10.1039/C7NJ04638C

    Article  CAS  Google Scholar 

  63. W. Du, R. Liu, Y. Jiang, Q. Lu, Y. Fan, F. Gao, Facile synthesis of hollow Co3O4 boxes for high capacity supercapacitor. J. Power. Sources 227, 101–105 (2013). https://doi.org/10.1016/j.jpowsour.2012.11.009

    Article  CAS  Google Scholar 

  64. Z. Xu, T. Wang, L. Wang, J. Xu, P. Liu, X. Lan, X. Li, M. Ni, Q. Jiang, F. Jiang, Aniline-grafting graphene oxide/polyaniline composite prepared via interfacial polymerization with high capacitive performance. Int. J. Energy Res. 43, 7693–7701 (2019). https://doi.org/10.1002/er.4756

    Article  CAS  Google Scholar 

  65. K.D. Poopalam, L. Raghunanan, L. Bouzidi, S.K. Yeong, S.S. Narine, Lipid-derived monoamide as phase change energy storage materials. Int. J. Energy Res. 43(13), 6934–6950 (2019). https://doi.org/10.1002/er.4711

    Article  CAS  Google Scholar 

  66. C. Zhang, S. Bhoyate, C. Zhao, P.K. Kahol, N. Kostoglou, C. Mitterer, S.J. Hinder, M.A. Baker, G. Constantinides, K. Polychronopoulou, C. Rebholz, Electrodeposited nanostructured CoFe2O4 for overall water splitting and supercapacitor applications. Catalysts 9, 176 (2019). https://doi.org/10.3390/catal9020176

    Article  CAS  Google Scholar 

  67. J. Bhagwan, G. Nagaraju, B. Ramulu, J.S. Yu, Promotive effect of MWCNT on ZnCo2O4 hexagonal plates and their application in aqueous asymmetric supercapacitor. J. Electro Chem. Soc. 166, A217 (2019). https://doi.org/10.1149/2.0631902jes

    Article  CAS  Google Scholar 

  68. I. Shaheen, K.S. Ahmad, C. Zequine, R.K. Gupta, A.G. Thomas, M.A. Malik, Effects of bioactive compounds on the morphology and surface chemistry of MoO3/ZnMoO4 nanocomposite for supercapacitor. J. Mater. Sci. 55, 7743–7759 (2020). https://doi.org/10.1007/s10853-020-04544-3

    Article  CAS  Google Scholar 

  69. H. Wang, J. Guo, C. Qing, D. Sun, B. Wang, Y. Tang, Novel topotactically transformed carbon–CoO–NiO–NiCo2O4 nanosheet hybrid hetero-structured arrays as ultrahigh performance supercapacitors. Chem. Comm. 50, 8697–8700 (2014). https://doi.org/10.1039/C4CC01965B

    Article  CAS  Google Scholar 

  70. S.X. Wang, C.C. Jin, W.J. Qian, Bi2O3 with activated carbon composite as a supercapacitor electrode. J. Alloys Compds. 615, 12–17 (2014). https://doi.org/10.1016/j.jallcom.2014.06.149

    Article  CAS  Google Scholar 

  71. S. Veeralakshmi, S. Kalaiselvam, R. Murugan, P. Pandurangan, S. Nehru, S. Sakthinathan, T.W. Chiu, An approach to develop high performance supercapacitor using Bi 2 O 3 based binary and ternary nanocomposites. J. Mater. Sci. Mater. Electron. 31, 22417–22426 (2020). https://doi.org/10.1007/s10854-020-04743-3

    Article  CAS  Google Scholar 

  72. W. Zhou, J. Liu, T. Chen, K.S. Tan, X. Jia, Z. Luo, C. Cong, H. Yang, C.M. Li, T. Yu, Fabrication of Co3O4-reduced graphene oxide scrolls for high-performance supercapacitor electrodes. PCCP 13, 14462–14465 (2011). https://doi.org/10.1039/C1CP21917K

    Article  CAS  Google Scholar 

  73. S.A. Razali, S.R. Majid, Electrochemical performance of binder-free NiO-PANI on etched carbon cloth as active electrode material for supercapacitor. Mater. Des. 153, 24–35 (2018). https://doi.org/10.1016/j.matdes.2018.04.074

    Article  CAS  Google Scholar 

  74. A. Ali, M. Ammar, M. Ali, Z. Yahya, M.Y. Javaid, S. Ul Hassan, T. Ahmed, Mo-doped ZnO nanoflakes on Ni-foam for asymmetric supercapacitor applications. RSC Adv. 9, 27432–8 (2019). https://doi.org/10.1039/C9RA05051E

    Article  CAS  Google Scholar 

  75. M.D. Khan, S.U. Awan, C. Zequine, C. Zhang, R.K. Gupta, N. Revaprasadu, Controlled synthesis of Sb2 (S1–x Se x) 3 (0≤ x≤ 1) solid solution and the effect of composition variation on electrocatalytic energy conversion and storage. ACS Appl. Energy Mater. 3, 1448–1460 (2020). https://doi.org/10.1021/acsaem.9b01895

    Article  CAS  Google Scholar 

  76. K. Tao, X. Han, Q. Ma, L. Han, A metal–organic framework derived hierarchical nickel–cobalt sulfide nanosheet array on Ni foam with enhanced electrochemical performance for supercapacitors. Dalton Trans. 47, 3496–3502 (2018). https://doi.org/10.1039/C7DT04942K

    Article  CAS  Google Scholar 

  77. C. Gervas, M.D. Khan, S. Mlowe, C. Zhang, C. Zhao, R.K. Gupta, M.P. Akerman, P. Mashazi, T. Nyokong, N. Revaprasadu, Synthesis of off-stoichiometric CoS nanoplates from a molecular precursor for efficient H2/O2 evolution and supercapacitance. Chem. Electro Chem. 6, 2560–2569 (2019). https://doi.org/10.1002/celc.201900413

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Department of Environmental Sciences, Lab E-21, Fatima Jinnah Women University, Rawalpindi and Higher Education Commission, Pakistan. Authors also extend their sincere gratitude to the Queen Mary University of London, United Kingdom and Pittsburg State University, Pittsburg, USA.

Funding

This work was funded by the Researchers Supporting Project Number (RSPD2023R667), King Saud University, Riyadh, Saudi Arabia

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by SA and KSA. The first draft of the manuscript was written by SA and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. SA: investigation, methodology, data curation, formal analysis, visualization, validation. KSA: project administration, supervision, funding acquisition. IA: visualization, supervision, funding acquisition. WL: investigation, methodology. RKG: investigation, methodology. AE-m: writing & editing.

Corresponding author

Correspondence to Khuram Shahzad Ahmad.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest. The authors have no relevant financial or non-relevant financial interests to disclose.

Informed consent

Not applicable.

Consent for publication

Not applicable.

Research involving in human and animal participants

The current work does not involve experimentation on any human or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azhar, S., Ahmad, K.S., Abrahams, I. et al. Synthesis of phyto-mediated CuO–ZrO2 nanocomposite and investigation of their role as electrode material for supercapacitor and water splitting studies. Journal of Materials Research 38, 4937–4950 (2023). https://doi.org/10.1557/s43578-023-01204-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01204-5

Keywords

Navigation