Abstract
The present research focused on environmentally benign synthesis of CuO–ZrO2 nanocomposite using bioactive compounds of A. viridis. Phase analysis of CuO–ZrO2 using Xray diffraction revealed the crystal size of 30.3 nm. Scanning electron microscope showed spherical-shaped nanoparticles of 88 nm size. The band gap value of 2.25 eV was obtained. The synthesized CuO–ZrO2 material was further investigated as electrode material for supercapacitor and water splitting studies. Cyclic voltammetry was used to estimate the specific capacitance value of 374.7 F/g, and galvanostatic charge discharge was used to determine the specific capacitance value of 286.3 F/g. Electrochemical impedance spectroscopy (EIS) and linear sweep voltammetry (LSV) were used to conduct HER and OER experiments. Tafel value of 143 mV/dec and overpotential value of 225 mV was recorded for composite by LSV for hydrogen evolution reaction.
Graphical abstract
Similar content being viewed by others
Data availability
Data would be available on demand.
Code availability
Not applicable.
References
W. Su, R. Miao, B. Tao, F. Miao, High-performance symmetric supercapacitor based on flower-like zinc-cobalt-molybdenum hybrid metal oxide. Ionics (2019). https://doi.org/10.1007/s11581-019-03125-y
M.H. Balali, N. Nouri, E. Omrani, A. Nasiri, W. Otieno, An overview of the environmental, economic, and material developments of the solar and wind sources coupled with the energy storage systems. Int. J. Energy Res. 41, 1948–1962 (2017). https://doi.org/10.1002/er.3755
M. Gao, W. Sheng, Z. Zhuang, Q. Fang, S. Gu, J. Jiang, Y. Yan, Efficient water oxidation using nanostructured α-nickel-hydroxide as an electrocatalyst. J. Am. Chem. Soc. 136, 7077–7084 (2014). https://doi.org/10.1021/ja502128j
L. Trotochaud, S.L. Young, J.K. Ranney, S.W. Boettcher, Nickel–iron oxyhydroxide oxygen-evolution electrocatalysts: the rolof intentional and incidental iron incorporation. J. Am. Chem. Soc. 136, 6744–6753 (2014). https://doi.org/10.1021/ja502379c
Y. Li, H. Zhang, T. Xu, Z. Lu, X. Wu, P. Wan, X. Sun, L. Jiang, Under-water superaerophobic pine-shaped Pt nanoarray electrode for ultrahigh-performance hydrogen evolution. Adv. Funct. Mater. (2015). https://doi.org/10.1002/adfm.201404250
S.Q. Wang, W.Y. Xia, Z.S. Liang, Z.L. Liu, C.W. Xu, Q.Y. Li, NiO/C enhanced by noble metal (Pt, Pd, Au) as high-efficient electrocatalyst for oxygen evolution reaction in water oxidation to obtain high purity hydrogen. Ionics (2017). https://doi.org/10.1007/s11581-017-2041-x
M.I. Jamesh, Recent progress on earth abundant hydrogen evolution reaction and oxygen evolution reaction bifunctional electrocatalyst for overall water splitting in alkaline media. J Power Sources 196, 213–236 (2016). https://doi.org/10.1016/j.jpowsour.2016.09.161
W. Hu, Y. Wang, X. Hu, Y. Zhou, S. Chen, Three-dimensional ordered macroporous IrO2 as electrocatalyst for oxygen evolution reaction in acidic medium. J. Mater. Chem. 22, 6010–6016 (2012). https://doi.org/10.1039/C2JM16506F
R. Li, Z. Wei, X. Gou, Nitrogen and phosphorus dual-doped graphene/carbon nanosheets as bifunctional electrocatalysts for oxygen reduction and evolution. ACS Catal. 5, 4133–4142 (2015). https://doi.org/10.1021/acscatal.5b00601
X. Zhou, Y. Liu, H. Ju, B. Pan, J. Zhu, T. Ding, C. Wang, Q. Yang, Design and epitaxial growth of MoSe2–NiSe vertical hetero nano structures with electronic modulation for enhanced hydrogen evolution reaction. Chem. Mater. 28, 1838–1846 (2016). https://doi.org/10.1021/acs.chemmater.5b05006
K.S. Ahmad, S.B. Jaffri, Phytosynthetic Ag doped ZnO nanoparticles: semiconducting green remediators. Open Chem. 16, 556–570 (2018). https://doi.org/10.1515/chem-2018-0060
I. Shakir, M. Shahid, S. Cherevko, C.H. Chung, D.J. Kang, Ultrahigh-energy and stable supercapacitors based on intertwined porous MoO3–MWCNT nanocomposites. Electrochim. Acta. 30(58), 76–80 (2011). https://doi.org/10.1016/j.electacta.2011.08.076
S.K. Ujjain, G. Singh, R.K. Sharma, Co3O4@ reduced graphene oxide nanoribbon for high performance asymmetric supercapacitor. Electrochim. Acta 169, 276–282 (2015). https://doi.org/10.1016/j.electacta.2015.03.141
T. Pettong, P. Iamprasertkun, A. Krittayavathananon, P. Sukha, P. Sirisinudomkit, A. Seubsai, M. Chareonpanich, P. Kongkachuichay, J. Limtrakul, M. Sawangphruk, High-performance asymmetric supercapacitors of MnCo2O4 nanofibers and N-doped reduced graphene oxide aerogel. ACS Appl. Mater. Interfaces 8, 34045–53 (2016). https://doi.org/10.1021/acsami.6b09440
G. Li, M. Chen, Y. Ouyang, D. Yao, L. Lu, L. Wang, X. Xia, W. Lei, S.M. Chen, D. Mandler, Q. Hao, Manganese doped Co3O4 mesoporous nanoneedle array for long cycle-stable supercapacitors. Appl. Surf. Sci. 469, 941–950 (2019). https://doi.org/10.1016/j.apsusc.2018.11.099
Y. Tong, X. Cheng, X. Liu, D. Qi, B. Chi, Y. Wang, Hybrid Co3O4/Co9S8 nanowires for high-performance asymmetric supercapacitors. J. Nanoelectron. 15, 237–242 (2020). https://doi.org/10.1166/jno.2020.2691
S.B. Jafri, K.S. Ahmad, Augmented photocatalytic, antibacterial and antifungal activity of prunosynthetic silver nanoparticles. Artif. Cells Nanomed. Biotech. 46, 127–137 (2018). https://doi.org/10.1080/21691401.2017.1414826
I. Shaheen, K.S. Ahmad, S.B. Jaffri, D. Ali, Biomimetic [MoO3@ZnO] semiconducting nanocomposites: chemo-proportional fabrication, characterization and energy storage potential exploration. Renew. Energy. 167, 568–579 (2021). https://doi.org/10.1016/j.renene.2020.11.115
K. Kombaiah, J.J. Vijaya, L.J. Kennedy, M. Bououdina, K. Kaviyarasu, R.J. Ramalingam, H.A. Al-Lohedan, M.A. Munusamy, A green approach: synthesis, characterization and opto-magnetic properties of MgxMn1–x Fe2O4 spinel nanoparticles. J. Mater. Sci. Mater. Electron. 28, 10321–10329 (2017). https://doi.org/10.1007/s10854-017-6800-2
K.S. Ahmad, S.B. Jafri, Carpogenic ZnO nanoparticles: amplifed nanophotocatalytic and antimicrobial action. IET. Nanobiotech. 13, 150–159 (2019). https://doi.org/10.1049/iet-nbt.2018.5006
J. Fulekar, D.P. Dutta, B. Pathak, M.H. Fulekar, Novel microbial and root mediated green synthesis of TiO2 nanoparticles and its application in wastewater remediation. J. Chem. Techno. 93, 736–743 (2018). https://doi.org/10.1002/jctb.5423
I. Shaheen, K.S. Ahmad, C. Zequine, R.K. Gupta, A. Thomas, M.A. Malik, Organic template-assisted green synthesis of CoMoO 4 nanomaterials for the investigation of energy storage properties. RSC Adv. 10, 8115–8129 (2020). https://doi.org/10.1039/C9RA09477F
T. Zahra, K.S. Ahmad, A.G. Thomas, C. Zequine, R.K. Gupta, M.A. Malik, M. Sohail, Phyto-inspired and scalable approach for the synthesis of PdO–2Mn2O3: a nano-material for application in water splitting electro-catalysis. RSC Adv. 10, 29961–29974 (2020). https://doi.org/10.1039/D0RA04571C
S. Azhar, K.S. Ahmad, I. Abrahams, W. Lin, R.K. Gupta, M. Mazhar, D. Ali, Phyto-inspired Cu/Bi oxide-based nanocomposites: synthesis, characterization, and energy relevant investigation. RSC Adv. 11, 30510–30519 (2021). https://doi.org/10.1039/D1RA05066D
I. Shaheen, K.S. Ahmad, C. Zequine, R.K. Gupta, A.G. Thomas, M.A. Malik, Functionalization of MoO3NiMoO4 nanocomposite using organic template for energy storage application. J. Energy Storage 29, 101309 (2020). https://doi.org/10.1016/j.est.2020.101309
T. Zahra, K.S. Ahmad, A.G. Thomas, C. Zequine, M.A. Malik, R.K. Gupta, Organic template-based ZnO embedded Mn 3 O 4 nanoparticles: synthesis and evaluation of their electrochemical properties towards clean energy generation. RSC Adv. 10, 9854–9867 (2020). https://doi.org/10.1039/C9RA10472K
M. Yin, C.K. Wu, Y. Lou, C. Burda, J.T. Koberstein, Y. Zhu, S. O’Brien, Copper oxide nanocrystals. J. ACS. 127, 9506–11 (2005). https://doi.org/10.1021/ja050006u
A. Inoue, B. Shen, Soft magnetic properties of nanocrystalline Fe–Co–B–Si–Nb–Cu alloys in ribbon and bulk forms. JMR 129, 2799–806 (2003). https://doi.org/10.1557/JMR.2003.0390
M.S. Hassan, T. Amna, O.B. Yang, M.H. El-Newehy, S.S. Al-Deyab, M.S. Khil, Smart copper oxide nanocrystals: synthesis, characterization, electrochemical and potent antibacterial activity. Colloid. Surf. B. 97, 201–206 (2012). https://doi.org/10.1016/j.colsurfb.2012.04.032
J.Y. Xiang, J.P. Tu, L. Zhang, Y. Zhou, X.L. Wang, S.J. Shi, Self-assembled synthesis of hierarchical nanostructured CuO with various morphologies and their application as anodes for lithium ion batteries. J. Power Sources 195, 313–9 (2010). https://doi.org/10.1016/j.jpowsour.2009.07.022
J.Y. Xiang, J.P. Tu, L. Zhang, Y. Zhou, X.L. Wang, S.J. Shi, Simple synthesis of surface-modified hierarchical copper oxide spheres with needle-like morphology as anode for lithium ion batteries. Electrochim. Acta 55, 1820–1824 (2010). https://doi.org/10.1016/j.electacta.2009.10.073
R. Sigwadi, M. Dhlamini, T. Mokrani, F. Nemavhola, Preparation of a high surface area zirconium oxide for fuel cell application. Int. J. Mech. Mater. Eng. 14, 1–1 (2019). https://doi.org/10.1186/s40712-019-0102-9
I. Shaheen, K.S. Ahmad, C. Zequine, R.K. Gupta, A.G. Thomas, M.A. Malik, Green synthesis of ZnO–Co3O4 nanocomposite using facile foliar fuel and investigation of its electrochemical behaviour for supercapacitors. NJC 44, 18281–18292 (2020). https://doi.org/10.1039/D0NJ03430D
N. Mayedwa, N. Mongwaketsi, S. Khamlich, K. Kaviyarasu, N. Matinise, M. Maaza, Green synthesis of nickel oxide, palladium and palladium oxide synthesized via Aspalathus linearis natural extracts: physical properties & mechanism of formation. Appl. Surf. Sci. 15(446), 266–72 (2018). https://doi.org/10.1016/j.apsusc.2017.12.116
Y. Li, K. Li, Y. Luo, B. Liu, H. Wang, L. Gao, G. Duan, Synthesis of Co3O4/ZnO nano-heterojunctions by one-off processing ZIF-8@ ZIF-67 and their gas-sensing performances for trimethylamine. Sens. Acutators. B. Chem. 308, 127657 (2020). https://doi.org/10.1016/j.snb.2020.127657
J. Sun, L. Sun, S. Bai, H. Fu, J. Guo, Y. Feng, R. Luo, D. Li, A. Chen, Pyrolyzing Co/Zn bimetallic organic framework to form pn heterojunction of Co3O4/ZnO for detection of formaldehyde. Sens. Acutators. B. 15, 291–301 (2019). https://doi.org/10.1016/j.snb.2018.12.080
I. Hussain, S.G. Mohamed, A. Ali, N. Abbas, S.M. Ammar, W. Al Zoubi, Uniform growth of Zn-Mn-Co ternary oxide nanoneedles for high-performance energy-storage applications. J. Electroanal. Chem. 15, 39–47 (2019). https://doi.org/10.1016/j.jelechem.2019.01.052
S. Ahmed, S.A. Chaudhry, S. Ikram, A review on biogenic synthesis of ZnO nanoparticles using plant extracts and microbes: a prospect towards green chemistry. J. Photochem. Photobiol. B. Biol. 166, 272–284 (2017). https://doi.org/10.1016/j.jphotobiol.2016.12.011
F. Sultana, J. Barman, M.C. Kalita, Biogenic synthesis of ZnO nanoparticles using polygonum chinense leaf extract and their antibacterial activity. Int. J. Nanotechnol. Appl. 11, 155–165 (2017)
H. Jan, M. Shah, H. Usman, M.A. Khan, M. Zia, C. Hano, B.H. Abbasi, Biogenic synthesis and characterization of antimicrobial and antiparasitic zinc oxide (ZnO) nanoparticles using aqueous extracts of the Himalayan Columbine (Aquilegia pubiflora). Front. Mater. 12, 7–249 (2020)
J. Jayabalan, G. Mani, N. Krishnan, J. Pernabas, J.M. Devadoss, H.T. Jang, Green biogenic synthesis of zinc oxide nanoparticles using Pseudomonas putida culture and its in vitro antibacterial and anti-biofilm activity. ISBAB 21, 101327 (2019). https://doi.org/10.1016/j.bcab.2019.101327
N.M. Ngoepe, Z. Mbita, M. Mathipa, N. Mketo, B. Ntsendwana, N.C. Hintsho-Mbita, Biogenic synthesis of ZnO nanoparticles using Monsonia burkeana for use in photocatalytic, antibacterial and anticancer applications. Ceram. Int. 44, 16999–17006 (2018). https://doi.org/10.1016/j.ceramint.2018.06.142
T. Zahra, K.S. Ahmad, C. Zequine, R.K. Gupta, A.G. Thomas, M.A. Malik, Evaluation of electrochemical properties for water splitting by NiO nano-cubes synthesized using Olea ferruginea Royle. Sustain 40, 100753 (2020). https://doi.org/10.1016/j.seta.2020.100753
S.B. Jaffri, K.S. Ahmad, Biomimetic detoxifier Prunus cerasifera Ehrh. silver nanoparticles: innate green bullets for morbific pathogens and persistent pollutants. ESPR 27, 9669–85 (2020). https://doi.org/10.1007/s11356-020-07626-6
S. Azhar, K.S. Ahmad, I. Abrahams, S.B. Jaffri, T. Ingsel, R.K. Gupta, D. Ali, Biomimetic [AV-Er2O3-doped δ-Bi2O3]-stacked nanoplates: an efficient electrocatalyst for OER/HER and electrode material for supercapacitor application. Ionics 27, 1–6 (2023). https://doi.org/10.1007/s11581-023-05002-1
H. Han, K.M. Kim, H. Choi, G. Ali, K.Y. Chung, Y.R. Hong, J. Choi, J. Kwon, S.W. Lee, J.W. Lee, J.H. Ryu, Parallelized reaction pathway and stronger internal band bending by partial oxidation of metal sulfide–graphene composites: important factors of synergistic oxygen evolution reaction enhancement. ACS Catal. 8, 4091–4102 (2018). https://doi.org/10.1021/acscatal.8b00017
A.Q. Mugheri, A. Tahira, U. Aftab, M.I. Abro, S.R. Chaudhry, L. Amaral, Z.H. Ibupoto, Facile efficient earth abundant NiO/C composite electrocatalyst for the oxygen evolution reaction. RSC Adv. 9, 5701–10 (2019). https://doi.org/10.1039/C8RA10472G
J. Wu, Y. Xue, X. Yan, W. Yan, Q. Cheng, Y. Xie, Co3O4 nanocrystals on single-walled carbon nanotubes as a highly efcient oxygen-evolving catalyst. Nano. Res. 5, 521–530 (2012). https://doi.org/10.1007/s12274-012-0237-y
Y. Li, P. Hasin, Y. Wu, NixCo3− xO4 nanowire arrays for electrocatalytic oxygen evolution. Adv. Mater. 22, 1926–1929 (2010). https://doi.org/10.1002/adma.200903896
K. Thiagarajan, J. Theerthagiri, R.A. Senthil, P. Arunachalam, J. Madhavan, M.A. Ghanem, Synthesis of Ni3V2O8@ graphene oxide nanocomposite as an efficient electrode material for supercapacitor applications. J. Solid State Electrochem. 22, 527–536 (2018). https://doi.org/10.1007/s10008-017-3788-8
I.S. Lee, N. Lee, J. Park, B.H. Kim, Y.W. Yi, T. Kim, T.K. Kim, I.H. Lee, S.R. Paik, T. Hyeon, Ni/NiO core/shell nanoparticles for selective binding and magnetic separation of histidine-tagged proteins. J. ACS 128, 10658–10659 (2006). https://doi.org/10.1021/ja063177n
S. Khalid, C. Cao, L. Wang, Y. Zhu, Microwave assisted synthesis of porous NiCo2O4 microspheres: application as high performance asymmetric and symmetric supercapacitors with large areal capacitance. Sci. Rep. 26, 22699 (2016). https://doi.org/10.1038/srep22699
H.B. Kolodziej, B. Rozenfeld, Plasmon losses in energy spectra of electrons scattered on the surface of Fe, Co, Ni, Cu, and Zn samples, Acta Phys. Pol., A;(Poland).48(1975).
D.R. Cummins, U. Martinez, A. Sherehiy, R. Kappera, A. Martinez-Garcia, R.K. Schulze, J. Jasinski, J. Zhang, R.K. Gupta, J. Lou, M. Chhowalla, Efficient hydrogen evolution in transition metal dichalcogenides via a simple one-step hydrazine reaction. Nat. Commun. 7, 11857 (2016). https://doi.org/10.1038/ncomms11857
N. Mahmood, Y. Yao, J.W. Zhang, L. Pan, X. Zhang, J.J. Zou, Electrocatalysts for hydrogen evolution in alkaline electrolytes: mechanisms, challenges, and prospective solutions. Adv. Sci. 5, 1700464 (2018). https://doi.org/10.1002/advs.201700464
J. Wang, F. Xu, H. Jin, Y. Chen, Y. Wang, Non-noble metalbased carbon composites in hydrogen evolution reaction: fundamentals to applications. Adv. Mat. 14, 1605838 (2021). https://doi.org/10.1002/adma.201605838
B. Liu, S. Qu, Y. Kou, Z. Liu, X. Chen, Y. Wu, X. Han, Y. Deng, W. Hu, C. Zhong, Mat. Interf. 10, 30433–304340 (2018). https://doi.org/10.1021/acsami.8b10645
D. Merki, S. Fierro, H. Vrubel, X. Hu, Amorphous molybdenum sulfde flms as catalysts for electrochemical hydrogen production in water. Chem. Sci. 2, 1262–1267 (2011). https://doi.org/10.1039/C1SC00117E
X. Wu, X. Han, X. Ma, W. Zhang, Y. Deng, C. Zhong, W. Hu, Morphology-controllable synthesis of Zn–Co-mixed sulfde nanostructures on carbon fber paper toward efcient rechargeable zinc–air batteries and water electrolysis. ACS Appl. Mat. Interf. 9, 12574–12583 (2017). https://doi.org/10.1021/acsami.6b16602
X. Han, Y. Yang, J.J. Zhou, Q. Ma, K. Tao, L. Han, Metal-organic framework templated 3D hierarchical ZnCo2O4@ Ni (OH)2 core-shell nanosheet arrays for high-performance supercapacitors. Eur. J. Chem. 24, 18106–18114 (2018). https://doi.org/10.1002/chem.201804327
C. Gervas, M.D. Khan, S. Mlowe, C. Zhang, C. Zhao, R.K. Gupta, M.P. Akerman, P. Mashazi, T. Nyokong, N. Revaprasadu, Synthesis of off-stoichiometric CoS nanoplates from a molecular precursor for efficient H2/O2 evolution and supercapacitance. Chem. Electro. Chem. 6, 2560–2569 (2019). https://doi.org/10.1002/celc.201900413
E. Duraisamy, H.T. Das, A.S. Sharma, P. Elumalai, Supercapacitor and photocatalytic performances of hydrothermally-derived Co3O4/CoO@ carbon nanocomposite. NJC 42, 6114–6124 (2018). https://doi.org/10.1039/C7NJ04638C
W. Du, R. Liu, Y. Jiang, Q. Lu, Y. Fan, F. Gao, Facile synthesis of hollow Co3O4 boxes for high capacity supercapacitor. J. Power. Sources 227, 101–105 (2013). https://doi.org/10.1016/j.jpowsour.2012.11.009
Z. Xu, T. Wang, L. Wang, J. Xu, P. Liu, X. Lan, X. Li, M. Ni, Q. Jiang, F. Jiang, Aniline-grafting graphene oxide/polyaniline composite prepared via interfacial polymerization with high capacitive performance. Int. J. Energy Res. 43, 7693–7701 (2019). https://doi.org/10.1002/er.4756
K.D. Poopalam, L. Raghunanan, L. Bouzidi, S.K. Yeong, S.S. Narine, Lipid-derived monoamide as phase change energy storage materials. Int. J. Energy Res. 43(13), 6934–6950 (2019). https://doi.org/10.1002/er.4711
C. Zhang, S. Bhoyate, C. Zhao, P.K. Kahol, N. Kostoglou, C. Mitterer, S.J. Hinder, M.A. Baker, G. Constantinides, K. Polychronopoulou, C. Rebholz, Electrodeposited nanostructured CoFe2O4 for overall water splitting and supercapacitor applications. Catalysts 9, 176 (2019). https://doi.org/10.3390/catal9020176
J. Bhagwan, G. Nagaraju, B. Ramulu, J.S. Yu, Promotive effect of MWCNT on ZnCo2O4 hexagonal plates and their application in aqueous asymmetric supercapacitor. J. Electro Chem. Soc. 166, A217 (2019). https://doi.org/10.1149/2.0631902jes
I. Shaheen, K.S. Ahmad, C. Zequine, R.K. Gupta, A.G. Thomas, M.A. Malik, Effects of bioactive compounds on the morphology and surface chemistry of MoO3/ZnMoO4 nanocomposite for supercapacitor. J. Mater. Sci. 55, 7743–7759 (2020). https://doi.org/10.1007/s10853-020-04544-3
H. Wang, J. Guo, C. Qing, D. Sun, B. Wang, Y. Tang, Novel topotactically transformed carbon–CoO–NiO–NiCo2O4 nanosheet hybrid hetero-structured arrays as ultrahigh performance supercapacitors. Chem. Comm. 50, 8697–8700 (2014). https://doi.org/10.1039/C4CC01965B
S.X. Wang, C.C. Jin, W.J. Qian, Bi2O3 with activated carbon composite as a supercapacitor electrode. J. Alloys Compds. 615, 12–17 (2014). https://doi.org/10.1016/j.jallcom.2014.06.149
S. Veeralakshmi, S. Kalaiselvam, R. Murugan, P. Pandurangan, S. Nehru, S. Sakthinathan, T.W. Chiu, An approach to develop high performance supercapacitor using Bi 2 O 3 based binary and ternary nanocomposites. J. Mater. Sci. Mater. Electron. 31, 22417–22426 (2020). https://doi.org/10.1007/s10854-020-04743-3
W. Zhou, J. Liu, T. Chen, K.S. Tan, X. Jia, Z. Luo, C. Cong, H. Yang, C.M. Li, T. Yu, Fabrication of Co3O4-reduced graphene oxide scrolls for high-performance supercapacitor electrodes. PCCP 13, 14462–14465 (2011). https://doi.org/10.1039/C1CP21917K
S.A. Razali, S.R. Majid, Electrochemical performance of binder-free NiO-PANI on etched carbon cloth as active electrode material for supercapacitor. Mater. Des. 153, 24–35 (2018). https://doi.org/10.1016/j.matdes.2018.04.074
A. Ali, M. Ammar, M. Ali, Z. Yahya, M.Y. Javaid, S. Ul Hassan, T. Ahmed, Mo-doped ZnO nanoflakes on Ni-foam for asymmetric supercapacitor applications. RSC Adv. 9, 27432–8 (2019). https://doi.org/10.1039/C9RA05051E
M.D. Khan, S.U. Awan, C. Zequine, C. Zhang, R.K. Gupta, N. Revaprasadu, Controlled synthesis of Sb2 (S1–x Se x) 3 (0≤ x≤ 1) solid solution and the effect of composition variation on electrocatalytic energy conversion and storage. ACS Appl. Energy Mater. 3, 1448–1460 (2020). https://doi.org/10.1021/acsaem.9b01895
K. Tao, X. Han, Q. Ma, L. Han, A metal–organic framework derived hierarchical nickel–cobalt sulfide nanosheet array on Ni foam with enhanced electrochemical performance for supercapacitors. Dalton Trans. 47, 3496–3502 (2018). https://doi.org/10.1039/C7DT04942K
C. Gervas, M.D. Khan, S. Mlowe, C. Zhang, C. Zhao, R.K. Gupta, M.P. Akerman, P. Mashazi, T. Nyokong, N. Revaprasadu, Synthesis of off-stoichiometric CoS nanoplates from a molecular precursor for efficient H2/O2 evolution and supercapacitance. Chem. Electro Chem. 6, 2560–2569 (2019). https://doi.org/10.1002/celc.201900413
Acknowledgments
The authors acknowledge the Department of Environmental Sciences, Lab E-21, Fatima Jinnah Women University, Rawalpindi and Higher Education Commission, Pakistan. Authors also extend their sincere gratitude to the Queen Mary University of London, United Kingdom and Pittsburg State University, Pittsburg, USA.
Funding
This work was funded by the Researchers Supporting Project Number (RSPD2023R667), King Saud University, Riyadh, Saudi Arabia
Author information
Authors and Affiliations
Contributions
All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by SA and KSA. The first draft of the manuscript was written by SA and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. SA: investigation, methodology, data curation, formal analysis, visualization, validation. KSA: project administration, supervision, funding acquisition. IA: visualization, supervision, funding acquisition. WL: investigation, methodology. RKG: investigation, methodology. AE-m: writing & editing.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflict of interest. The authors have no relevant financial or non-relevant financial interests to disclose.
Informed consent
Not applicable.
Consent for publication
Not applicable.
Research involving in human and animal participants
The current work does not involve experimentation on any human or animals.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Azhar, S., Ahmad, K.S., Abrahams, I. et al. Synthesis of phyto-mediated CuO–ZrO2 nanocomposite and investigation of their role as electrode material for supercapacitor and water splitting studies. Journal of Materials Research 38, 4937–4950 (2023). https://doi.org/10.1557/s43578-023-01204-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/s43578-023-01204-5